1,236 research outputs found
Recommended from our members
Use of strain-annealing to evolve the grain boundary character distribution in polycrystalline copper
We have used a two-step (low and high temperature) strain-annealing process to evolve the grain boundary character distribution (GBCD) in fully recrystallized oxygen-free electronic (OFE) Cu bar that was forged and rolled. Orientation imaging microscopy has been used to characterize the GBCD after each step in the processing. The fraction of special grain boundaries was {similar_to}70% in the starting recrystallized material. Three different processing conditions were employed: high, moderate, and low temperature. The high-temperature process resulted in a reduction in the fraction of special GBs while both the lower temperature processes resulted in an increase in special fraction up to 85%. Further, the lower temperature processes resulted in average deviation angles from exact misorientation, for special boundaries, that were significantly smaller than observed from the high temperature process. Results indicate the importance of the low temperature part of the two-step strain-annealing process in preparing the microstructure for the higher temperature anneal and commensurate increase in the special fraction
Recommended from our members
Correlating Observations of Deformation Microstructures by TEM and Automated EBSD Techniques
The evolution of the deformed microstructure as a function of imposed plastic strain is of interest as it provides information on the material hardening characteristics and mechanism(s) by which cold work energy is stored. This has been extensively studied using transmission electron microscopy (TEM), where the high spatial and orientational resolution of the technique is used to advantage to study local phenomenon such as dislocation core structures and interactions of dislocations. With the recent emergence of scanning electron microscope (SEM) based automated electron backscatter diffraction (EBSD) techniques, it has now become possible to make mesoscale observations that are statistical in nature and complement the detailed TEM observations. Correlations of such observations will be demonstrated for the case of Ni-base alloys, which are typically non-cell forming solid solution alloys when deformed at ambient temperatures. For instance, planar slip is dominant at low strain levels but evolves into a microstructure where distinct crystallographic dislocation-rich walls form as a function of strain and grain orientation. Observations recorded using both TEM and EBSD techniques are presented and analyzed for their implication on subsequent annealing characteristics
Recommended from our members
High temperature deformation in 2036 Al and 0.2 wt % Zr-2036 A1
The microstructure and high-temperature deformation of 2036 Al and a 0.2 wt % Zr modified 2036 Al were characterized. A particle-simulated- nucleation process was applied to refine grain structure in both alloys. Thermomechanically processed materials were tested from 450 to 500 C and strain rates from 2{times}10{sup {minus}1} to 2{times}10{sup {minus}4}s{sup {minus}1}. Strain rate sensitivity exponent, activation energy, and total elongation were measured, and the deformation mechanism was proposed. Effect of Zr on microstructure and deformation of 2036 Al at elevated temperatures was discussed
Interpreting experimental bounds on D^0 - \bar{D^0} mixing in the presence of CP violation
We analyse the most recent experimental data regarding D^0 - \bar{D^0}
mixing, allowing for CP violation. We focus on the dispersive part of the
mixing amplitude, M^D_{12}, which is sensitive to new physics contributions. We
obtain a constraint on the mixing amplitude: |M^D_{12}| < 6.2\times 10^{-11}
MeV at 95% C.L. . This constraint is weaker by a factor of about three than the
one which is obtained when no CP violation is assumed.Comment: 9 pages, revtex4; One reference updated, one reference added,
footnote 3 correcte
Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations
We study the distributions of traveling length l and minimal traveling time t
through two-dimensional percolation porous media characterized by long-range
spatial correlations. We model the dynamics of fluid displacement by the
convective movement of tracer particles driven by a pressure difference between
two fixed sites (''wells'') separated by Euclidean distance r. For strongly
correlated pore networks at criticality, we find that the probability
distribution functions P(l) and P(t) follow the same scaling Ansatz originally
proposed for the uncorrelated case, but with quite different scaling exponents.
We relate these changes in dynamical behavior to the main morphological
difference between correlated and uncorrelated clusters, namely, the
compactness of their backbones. Our simulations reveal that the dynamical
scaling exponents for correlated geometries take values intermediate between
the uncorrelated and homogeneous limiting cases
Shared Care, Elder and Family Member Skills Used to Manage Burden
Aim. The aim of this paper is to further develop the construct of Shared Care by comparing and contrasting it to related research, and to show how the construct can be used to guide research and practice.
Background. While researchers have identified negative outcomes for family caregivers caused by providing care, less is known about positive aspects of family care for both members of a family dyad. Understanding family care relationships is important to nurses because family participation in the care of chronically ill elders is necessary to achieve optimal outcomes from nursing interventions. A previous naturalistic inquiry identified a new construct, Shared Care, which was used to describe a family care interaction that contributed to positive care outcomes.
Methods. A literature review was carried out using the databases Medline, CINAHL, and Psych-info and the keywords home care, care receiver, disability, family, communication, decision-making and reciprocity. The results of the review were integrated to suggest how Shared Care could be used to study care difficulties and guide interventions.
Results. The literature confirmed the importance of dyad relationships in family care. Shared Care extended previous conceptualizations of family care by capturing three critical components: communication, decision-making, and reciprocity. Shared Care provides a structure to expand the conceptualization of family care to include both members of a care dyad and account for positive and negative aspects of care.
Conclusions. The extended view provided by the construct of Shared Care offers practitioners and scholars tools to use in the context of our ageing population to improve the effectiveness of family care relationships
Scaling and self-averaging in the three-dimensional random-field Ising model
We investigate, by means of extensive Monte Carlo simulations, the magnetic
critical behavior of the three-dimensional bimodal random-field Ising model at
the strong disorder regime. We present results in favor of the two-exponent
scaling scenario, , where and are the
critical exponents describing the power-law decay of the connected and
disconnected correlation functions and we illustrate, using various finite-size
measures and properly defined noise to signal ratios, the strong violation of
self-averaging of the model in the ordered phase.Comment: 8 pages, 6 figures, to be published in Eur. Phys. J.
TbGT8 is a bifunctional glycosyltransferase that elaborates<em> N</em>-linked glycans on a protein phosphatase AcP115 and a GPI-anchor modifying glycan in <em>Trypanosoma brucei</em>
AbstractThe procyclic form of Trypanosoma brucei expresses procyclin surface glycoproteins with unusual glycosylphosphatidylinositol-anchor side chain structures that contain branched N-acetyllactosamine and lacto-N-biose units. The glycosyltransferase TbGT8 is involved in the synthesis of the branched side chain through its UDP-GlcNAc: βGal β1-3N-acetylglucosaminyltransferase activity. Here, we explored the role of TbGT8 in the mammalian bloodstream form of the parasite with a tetracycline-inducible conditional null T. brucei mutant for TbGT8. Under non-permissive conditions, the mutant showed significantly reduced binding to tomato lectin, which recognizes poly-N-acetyllactosamine-containing glycans. Lectin pull-down assays revealed differences between the wild type and TbGT8 null-mutant T. brucei, notably the absence of a broad protein band with an approximate molecular weight of 110kDa in the mutant lysate. Proteomic analysis revealed that the band contained several glycoproteins, including the acidic ecto-protein phosphatase AcP115, a stage-specific glycoprotein in the bloodstream form of T. brucei. Western blotting with an anti-AcP115 antibody revealed that AcP115 was approximately 10kDa smaller in the mutant. Enzymatic de-N-glycosylation demonstrated that the underlying protein cores were the same, suggesting that the 10-kDa difference was due to differences in N-linked glycans. Immunofluorescence microscopy revealed the colocalization of hemagglutinin epitope-tagged TbGT8 and the Golgi-associated protein GRASP. These data suggest that TbGT8 is involved in the construction of complex poly-N-acetyllactosamine-containing type N-linked and GPI-linked glycans in the Golgi of the bloodstream and procyclic parasite forms, respectively
Resonant Absorption as Mode Conversion?
Resonant absorption and mode conversion are both extensively studied
mechanisms for wave "absorption" in solar magnetohydrodynamics (MHD). But are
they really distinct? We re-examine a well-known simple resonant absorption
model in a cold MHD plasma that places the resonance inside an evanescent
region. The normal mode solutions display the standard singular resonant
features. However, these same normal modes may be used to construct a ray
bundle which very clearly undergoes mode conversion to an Alfv\'en wave with no
singularities. We therefore conclude that resonant absorption and mode
conversion are in fact the same thing, at least for this model problem. The
prime distinguishing characteristic that determines which of the two
descriptions is most natural in a given circumstance is whether the converted
wave can provide a net escape of energy from the conversion/absorption region
of physical space. If it cannot, it is forced to run away in wavenumber space
instead, thereby generating the arbitrarily small scales in situ that we
recognize as fundamental to resonant absorption and phase mixing. On the other
hand, if the converted wave takes net energy way, singularities do not develop,
though phase mixing may still develop with distance as the wave recedes.Comment: 23 pages, 8 figures, 2 tables; accepted by Solar Phys (July 9 2010
A comparative study of the electrochemical properties of vitamin B-6 related compounds at physiological pH
A comparative study of vitamin B6 group and related compounds in buffered solutions using electrochemical techniques has been performed at neutral pH. Irreversible bi- or tetra-electronic processes are observed for these substances, and the electron transfer coefficient (αn) calculated. It was concluded that either the first or second electron transfer were the rate determining step of the electrode process. The diffusion coefficient of these substances was calculated and the values given follow an inverse tendency to the molecular size. For aldehydes the values obtained were corrected of the hydration reaction.
It is important to remark that catalytic waves were reported for the first time for these compounds. Using a model involving the nitrogen of the basic structure the kinetic constants were calculated for most of them
- …