7 research outputs found

    GEANT4 Studies of Magnets Activation in the HEBT Line for the European Spallation Source

    Get PDF
    The High Energy Beam Transport (HEBT) line for the European Spallation Source is designed to transport the beam from the underground linac to the target at the surface level while keeping the beam losses small and providing the requested beam footprint and profile on the target. This paper presents activation studies of the magnets in the HEBT line due to backscattered neutrons from the target and beam interactions inside the collimators producing unstable isotopes

    The histidine effect. Electron transfer and capture cause different dissociations and rearrangements of histidine peptide cation-radicals.

    No full text
    International audienceElectron-transfer and -capture dissociations of doubly protonated peptides gave dramatically different product ions for a series of histidine-containing pentapeptides of both non-tryptic (AAHAL, AHAAL, AHADL, AHDAL) and tryptic (AAAHK, AAHAK, AHAAK, HAAAK, AAAHR, AAHAR, AHAAR, HAAAR) type. Electron transfer from gaseous Cs atoms and fluoranthene anions triggered backbone dissociations of all four N-C(alpha) bonds in the peptide ions in addition to loss of H and NH(3). Substantial fractions of charge-reduced cation-radicals did not dissociate on an experimental time scale ranging from 10(-6) to 10(-1) s. Multistage tandem mass spectrometric (MS(n)) experiments indicated that the non-dissociating cation-radicals had undergone rearrangements. These were explained as being due to proton migrations from N-terminal ammonium and COOH groups to the C-2' position of the reduced His ring, resulting in substantial radical stabilization. Ab initio calculations revealed that the charge-reduced cation-radicals can exist as low-energy zwitterionic amide pi* states which were local energy minima. These states underwent facile exothermic proton migrations to form aminoketyl radical intermediates, whereas direct N-C(alpha) bond cleavage in zwitterions was disfavored. RRKM analysis indicated that backbone N-C(alpha) bond cleavages did not occur competitively from a single charge-reduced precursor. Rather, these bond cleavages proceeded from distinct intermediates which originated from different electronic states accessed by electron transfer. In stark contrast to electron transfer, capture of a free electron by the peptide ions mainly induced radical dissociations of the charge-carrying side chains and loss of a hydrogen atom followed by standard backbone dissociations of even-electron ions. The differences in dissociation are explained by different electronic states being accessed upon electron transfer and capture
    corecore