46 research outputs found
Cathodic corrosion: Part 1. Mechanism of corrosion via formation of metal anions in aqueous medium
In this paper we describe an unusual electrochemical phenomenon, namely cathodic corrosion of platinum.
We show that all existing models of cathodic corrosion are inconsistent with our experimental observations.
Therefore, we present a new model of cathodic corrosion, which is based on the assumption that metal anions are
formed at the electrode surface during the corrosion process. These anionic species function as precursors for the
formation of the final product of cathodic corrosion–metal nanoparticles
Cathodic corrosion: Part 2. Properties of nanoparticles synthesized by cathodic corrosion
We demonstrate how cathodic corrosion in concentrated aqueous solutions enables one to prepare nanoparticles
of various metals and metal alloys. Using various characterization methods we show that the composition of
nanoparticles remains that of the starting material, and the resulting size distribution remains rather narrow. For
the case of platinum we show how the size and possibly even the shape of the nanoparticles can be easily controlled
by the parameters of corrosion. Finally, we discuss the advantages of using the nanoparticles prepared by
cathodic corrosion for applications in (electro-)catalysis
SINR Analysis of Opportunistic MIMO-SDMA Downlink Systems with Linear Combining
Opportunistic scheduling (OS) schemes have been proposed previously by the
authors for multiuser MIMO-SDMA downlink systems with linear combining. In
particular, it has been demonstrated that significant performance improvement
can be achieved by incorporating low-complexity linear combining techniques
into the design of OS schemes for MIMO-SDMA. However, this previous analysis
was performed based on the effective signal-to-interference ratio (SIR),
assuming an interference-limited scenario, which is typically a valid
assumption in SDMA-based systems. It was shown that the limiting distribution
of the effective SIR is of the Frechet type. Surprisingly, the corresponding
scaling laws were found to follow with , rather
than the conventional form.
Inspired by this difference between the scaling law forms, in this paper a
systematic approach is developed to derive asymptotic throughput and scaling
laws based on signal-to-interference-noise ratio (SINR) by utilizing extreme
value theory. The convergence of the limiting distribution of the effective
SINR to the Gumbel type is established. The resulting scaling law is found to
be governed by the conventional form. These novel results are
validated by simulation results. The comparison of SIR and SINR-based analysis
suggests that the SIR-based analysis is more computationally efficient for
SDMA-based systems and it captures the asymptotic system performance with
higher fidelity.Comment: Proceedings of the 2008 IEEE International Conference on
Communications, Beijing, May 19-23, 200
Electronic shell effects and the stability of alkali nanowires
Experimental conductance histograms for Na nanowires are analyzed in detail
and compared to recent theoretical results on the stability of cylindrical and
elliptical nanowires, using the free-electron model. We find a one-to-one
correspondence between the peaks in the histograms and the most stable nanowire
geometries, indicating that several of the commonly observed nanowires have
elliptical cross sections
Anisotropic etching of platinum electrodes at the onset of cathodic corrosion
Catalysis and Surface Chemistr
Quantum size effects in Pb islands on Cu(111): Electronic-structure calculations
The appearance of "magic" heights of Pb islands grown on Cu(111) is studied
by self-consistent electronic structure calculations. The Cu(111) substrate is
modeled with a one-dimensional pseudopotential reproducing the essential
features, i.e. the band gap and the work function, of the Cu band structure in
the [111] direction. Pb islands are presented as stabilized jellium overlayers.
The experimental eigenenergies of the quantum well states confined in the Pb
overlayer are well reproduced. The total energy oscillates as a continuous
function of the overlayer thickness reflecting the electronic shell structure.
The energies for completed Pb monolayers show a modulated oscillatory pattern
reminiscent of the super-shell structure of clusters and nanowires. The energy
minima correlate remarkably well with the measured most probable heights of Pb
islands. The proper modeling of the substrate is crucial to set the
quantitative agreement.Comment: 4 pages, 4 figures. Submitte
Subsurface Oxygen on Pt(111) and Its Reactivity for CO Oxidation
Catalysis and Surface Chemistr
Towards unified understanding of conductance of stretched monatomic contacts
When monatomic contacts are stretched, their conductance behaves in
qualitatively different ways depending on their constituent atomic elements.
Under a single assumption of resonance formation, we show that various
conductance behavior can be understood in a unified way in terms of the
response of the resonance to stretching. This analysis clarifies the crucial
roles played by the number of valence electrons, charge neutrality, and orbital
shapes.Comment: 2 figure
Quantum interference structures in the conductance plateaus of gold nanojunctions
The conductance of breaking metallic nanojunctions shows plateaus alternated
with sudden jumps, corresponding to the stretching of stable atomic
configurations and atomic rearrangements, respectively. We investigate the
structure of the conductance plateaus both by measuring the voltage dependence
of the plateaus' slope on individual junctions and by a detailed statistical
analysis on a large amount of contacts. Though the atomic discreteness of the
junction plays a fundamental role in the evolution of the conductance, we find
that the fine structure of the conductance plateaus is determined by quantum
interference phenomenon to a great extent.Comment: 4 pages, 4 figure
Electron-Transport Properties of Na Nanowires under Applied Bias Voltages
We present first-principles calculations on electron transport through Na
nanowires at finite bias voltages. The nanowire exhibits a nonlinear
current-voltage characteristic and negative differential conductance. The
latter is explained by the drastic suppression of the transmission peaks which
is attributed to the electron transportability of the negatively biased plinth
attached to the end of the nanowire. In addition, the finding that a voltage
drop preferentially occurs on the negatively biased side of the nanowire is
discussed in relation to the electronic structure and conduction.Comment: 4 pages, 6 figure