227 research outputs found
Theoretical study of incoherent phi photoproduction on a deuteron target
We study the photoproduction of phi mesons in deuteron, paying attention to
the modification of the cross section from bound protons to the free ones with
the aim of comparing with recent results at LEPS. For this purpose we take into
account Fermi motion in single scattering and rescattering of the phi to
account for phi absorption on a second nucleon as well as the rescattering of
the proton. We find that the contribution of the double scattering is much
smaller than the typical cross section of gamma p to phi p in free space, which
implies a very small screening of the phi production in deuteron. The
contribution from the proton rescattering, on the other hand, is found to be
not negligible compared to the cross section of gamma p to phi p in free space,
and leads to a moderate reduction of the phi photoproduction cross section on a
deuteron at forward angles if LEPS set up is taken into account. The Fermi
motion allows contribution of the single scattering in regions forbidden by
phase space in the free case. In particular, we find that for momentum
transferred squared close to the maximum value, the Fermi motion changes
drastically the shape of d sigma / dt, to the point that the ratio of this
cross section to the free one becomes very sensitive to the precise value of t
chosen, or the size of the bin used in an experimental analysis. Hence, this
particular region of t does not seem the most indicated to find effects of a
possible phi absorption in the deuteron. This reaction is studied theoretically
as a function of t and the effect of the experimental angular cuts at LEPS is
also discussed, providing guidelines for future experimental analyses of the
reaction.Comment: 17 pages, 16 figure
Pentaquark spectrum in string dynamics
The masses of and pentaquarks are evaluated in a
framework of the Effective Hamiltonian approach to QCD using the Jaffe-Wilczek
approximation. The mass of the state is found to
be MeV higher than the observed mass.Comment: 6 pages, 1 figure included, LaTeX2e; several references added;
misprints corrected; to appear in Physics Letters
Vortex dissipation and level dynamics for the layered superconductors with impurities
We study parametric level statistics of the discretized excitation spectra
inside a moving vortex core in layered superconductors with impurities. The
universal conductivity is evaluated numerically for the various values of
rescaled vortex velocities from the clean case to the dirty limit
case. The random matrix theoretical prediction is verified numerically in the
large regime. On the contrary in the low velocity regime, we observe
which is consistent with the theoretical
result for the super-clean case, where the energy dissipation is due to the
Landau-Zener transition which takes place at the points called ``avoided
crossing''.Comment: 10 pages, 4 figures, REVTeX3.
Wavefunction statistics in open chaotic billiards
We study the statistical properties of wavefunctions in a chaotic billiard
that is opened up to the outside world. Upon increasing the openings, the
billiard wavefunctions cross over from real to complex. Each wavefunction is
characterized by a phase rigidity, which is itself a fluctuating quantity. We
calculate the probability distribution of the phase rigidity and discuss how
phase rigidity fluctuations cause long-range correlations of intensity and
current density. We also find that phase rigidities for wavefunctions with
different incoming wave boundary conditions are statistically correlated.Comment: 4 pages, RevTeX; 1 figur
Modeling the actinides with disordered local moments
A first-principles disordered local moment (DLM) picture within the
local-spin-density and coherent potential approximations (LSDA+CPA) of the
actinides is presented. The parameter free theory gives an accurate description
of bond lengths and bulk modulus. The case of -Pu is studied in
particular and the calculated density of states is compared to data from
photo-electron spectroscopy. The relation between the DLM description, the
dynamical mean field approach and spin-polarized magnetically ordered modeling
is discussed.Comment: 6 pages, 4 figure
Hubbard-U calculations for Cu from first-principles Wannier functions
We present first-principles calculations of optimally localized Wannier
functions for Cu and use these for an ab-initio determination of Hubbard
(Coulomb) matrix elements. We use a standard linearized muffin-tin orbital
calculation in the atomic-sphere approximation (LMTO-ASA) to calculate Bloch
functions, and from these determine maximally localized Wannier functions using
a method proposed by Marzari and Vanderbilt. The resulting functions were
highly localized, with greater than 89% of the norm of the function within the
central site for the occupied Wannier states. Two methods for calculating
Coulomb matrix elements from Wannier functions are presented and applied to fcc
Cu. For the unscreened on-site Hubbard for the Cu 3d-bands we have obtained
about 25eV. These results are also compared with results obtained from a
constrained local-density approximation (LDA) calculation.Comment: 13 pages, 8 figures, 5 table
Polarization observables in the reaction
We study the reaction slightly above the threshold within an
extended one-boson exchange model which also accounts for knock-out. It
is shown that polarization observables, like the beam-target asymmetry, are
sensible quantities for identifying a admixture in the nucleon wave
function on the few per cent level.Comment: 11 LaTeX pages including 4 ps figure
A Fermi Surface study of BaKBiO
We present all electron computations of the 3D Fermi surfaces (FS's) in
BaKBiO for a number of different compositions based on the
selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation
(KKR-CPA) approach for incorporating the effects of Ba/K substitution. By
assuming a simple cubic structure throughout the composition range, the
evolution of the nesting and other features of the FS of the underlying
pristine phase is correlated with the onset of various structural transitions
with K doping. A parameterized scheme for obtaining an accurate 3D map of the
FS in BaKBiO for an arbitrary doping level is developed. We
remark on the puzzling differences between the phase diagrams of
BaKBiO and BaPbBiO by comparing aspects
of their electronic structures and those of the end compounds BaBiO,
KBiO and BaPbO. Our theoretically predicted FS's in the cubic phase are
relevant for analyzing high-resolution Compton scattering and
positron-annihilation experiments sensitive to the electron momentum density,
and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.
Unscreened Hartree-Fock calculations for metallic Fe, Co, Ni, and Cu from ab-initio Hamiltonians
Unscreened Hartree-Fock approximation (HFA) calculations for metallic Fe, Co,
Ni, and Cu are presented, by using a quantum-chemical approach. We believe that
these are the first HFA results to have been done for crystalline 3d transition
metals. Our approach uses a linearized muffin-tin orbital calculation to
determine Bloch functions for the Hartree one-particle Hamiltonian, and from
these obtains maximally localized Wannier functions, using a method proposed by
Marzari and Vanderbilt. Within this Wannier basis all relevant one-particle and
two-particle Coulomb matrix elements are calculated. The resulting
second-quantized multi-band Hamiltonian with ab-initio parameters is studied
within the simplest many-body approximation, namely the unscreened,
self-consistent HFA, which takes into account exact exchange and is free of
self-interactions. Although the d-bands sit considerably lower within HFA than
within the local (spin) density approximation L(S)DA, the exchange splitting
and magnetic moments for ferromagnetic Fe, Co, and Ni are only slightly larger
in HFA than what is obtained either experimentally or within LSDA. The HFA
total energies are lower than the corresponding LSDA calculations. We believe
that this same approach can be easily extended to include more sophisticated
ab-initio many-body treatments of the electronic structure of solids.Comment: 11 papes, 7 figures, 5 table
Neutrinoless double-beta decay with three or four neutrino mixing
Considering the scheme with mixing of three neutrinos and a mass hierarchy
that can accommodate the results of solar and atmospheric neutrino experiments,
it is shown that the results of solar neutrino experiments imply a lower bound
for the effective Majorana mass in neutrinoless double-beta decay, under the
natural assumptions that massive neutrinos are Majorana particles and there are
no unlikely fine-tuned cancellations among the contributions of the different
neutrino masses. Considering the four-neutrino schemes that can accommodate
also the results of the LSND experiment, it is shown that only one of them is
compatible with the results of neutrinoless double-beta decay experiments and
with the measurement of the abundances of primordial elements produced in
Big-Bang Nucleosynthesis. It is shown that in this scheme, under the
assumptions that massive neutrinos are Majorana particles and there are no
cancellations among the contributions of the different neutrino masses, the
results of the LSND experiment imply a lower bound for the effective Majorana
mass in neutrinoless double-beta decay.Comment: 18 pages including 2 figures, RevTe
- …