17 research outputs found
The Influence of Solar Flares on the Lower Solar Atmosphere: Evidence from the Na D Absorption Line Measured by GOLF/SOHO
Solar flares presumably have an impact on the deepest layers of the solar
atmosphere and yet the observational evidence for such an impact is scarce.
Using ten years of measurements of the Na D and Na D Fraunhofer
lines, measured by GOLF onboard SOHO, we show that this photospheric line is
indeed affected by flares. The effect of individual flares is hidden by solar
oscillations, but a statistical analysis based on conditional averaging reveals
a clear signature. Although GOLF can only probe one single wavelength at a
time, we show that both wings of the Na line can nevertheless be compared. The
varying line asymmetry can be interpreted as an upward plasma motion from the
lower solar atmosphere during the peak of the flare, followed by a downward
motion.Comment: 13 pages, 7 figure
Physics of Solar Prominences: II - Magnetic Structure and Dynamics
Observations and models of solar prominences are reviewed. We focus on
non-eruptive prominences, and describe recent progress in four areas of
prominence research: (1) magnetic structure deduced from observations and
models, (2) the dynamics of prominence plasmas (formation and flows), (3)
Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and
large-scale patterns of the filament channels in which prominences are located.
Finally, several outstanding issues in prominence research are discussed, along
with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review