150 research outputs found

    Analyzing the Effectiveness of Digital Marketing Tools for Marketing Luxury Apartments

    Get PDF
    The study aims to analyze the effectiveness of digital marketing tools focusing on social media and website marketing, in promoting luxury apartments. The study collected data from real estate developers and marketers involved in the sale of luxury apartments, and the sample size was 95 respondents. A structured questionnaire survey was employed as the primary data collection method. The data were analyzed using the Statistical Package for Social Sciences (version 24). Descriptive statistics including frequencies, mean values, and percentages, were employed to analyze the data. The findings of the study indicate that both social media and website marketing are effective digital marketing tools for promoting luxury apartments. However, the study highlights that websites exhibit greater effectiveness compared to social media platforms in marketing luxury apartments. The outcomes of this research contribute valuable insights to real estate developers and marketers, guiding them in identifying the most suitable digital marketing tools for selling luxury apartments. By leveraging the knowledge gained from this study, real estate professionals can enhance their marketing performance and optimize their digital marketing strategies. Keywords: Digital Marketing, Marketing Effectiveness, Luxury Apartment, Social Media Marketing, Website Marketin

    A X-ray scanning machine for imaging atomic elements

    Get PDF
    X-ray computer axial tomography is a well established technique for producing images which show the spatial variation of X-ray linear attenuation coefficient within an object. X-ray differential K absorbtion edge tomography is the application of computer axial tomography to form images of selected atomic elements within an object, and these images show the distribution of specific atomic element concentration. The technique is to measure the attenuation of X-rays on either side of the K absorbtion edge of an atomic element with an energy dispersive X-ray detector, and then reconstruct an image of the location and concentration of that element in an object by means of a computer algorithm for display on a colour monitor. This method is able to image several atomic elements in one X-ray scan only of the object, in particular, consecutive elements in the Periodic Table of the Elements. One atomic element only within the object may be better selected by correcting for the X-ray attenuation of all the other elements, the matrix of the object, by extrapolating the measurements to the K absorbtion edge, thus measuring accurately the absorbtion coefficient of the analyte element only. The concentration of analyte element may O be measured down to about lkg/m in a water like matrix with a total of 108 photons. Herein is described the construction of an X-ray machine as a differential K absorbtion edge spectrometer, and the application of this technique to image three chosen atomic elements, 46Palladium, 47Silver, and 48Cadmium using the spectrometer. Experiments which showed that this technique works, and possible further development of the spectrometer, are also described

    Birds of Nusa Dua Sewage Treatment Ponds, Bali, and an unusual foraging behaviour of egrets

    Get PDF

    Indication of Non-equilibrium Transport in SiGe p-MOSFETs

    Get PDF
    No abstract avaliable

    A proposal for a study on treatment selection and lifestyle recommendations in chronic inflammatory diseases:A danish multidisciplinary collaboration on prognostic factors and personalised medicine

    Get PDF
    Chronic inflammatory diseases (CIDs), including Crohn’s disease and ulcerative colitis (inflammatory bowel diseases, IBD), rheumatoid arthritis, psoriasis, psoriatic arthritis, spondyloarthritides, hidradenitis suppurativa, and immune-mediated uveitis, are treated with biologics targeting the pro-inflammatory molecule tumour necrosis factor-α (TNF) (i.e., TNF inhibitors). Approximately one-third of the patients do not respond to the treatment. Genetics and lifestyle may affect the treatment results. The aims of this multidisciplinary collaboration are to identify (1) molecular signatures of prognostic value to help tailor treatment decisions to an individual likely to initiate TNF inhibitor therapy, followed by (2) lifestyle factors that support achievement of optimised treatment outcome. This report describes the establishment of a cohort that aims to obtain this information. Clinical data including lifestyle and treatment response and biological specimens (blood, faeces, urine, and, in IBD patients, intestinal biopsies) are sampled prior to and while on TNF inhibitor therapy. Both hypothesis-driven and data-driven analyses will be performed according to pre-specified protocols including pathway analyses resulting from candidate gene expression analyses and global approaches (e.g., metabolomics, metagenomics, proteomics). The final purpose is to improve the lives of patients suffering from CIDs, by providing tools facilitating treatment selection and dietary recommendations likely to improve the clinical outcome

    General features of experiments on the dynamics of laser-driven electron–positron beams

    Get PDF
    The experimental study of the dynamics of neutral electron–positron beams is an emerging area of research, enabled by the recent results on the generation of this exotic state of matter in the laboratory. Electron–positron beams and plasmas are believed to play a major role in the dynamics of extreme astrophysical objects such as supermassive black holes and pulsars. For instance, they are believed to be the main constituents of a large number of astrophysical jets, and they have been proposed to significantly contribute to the emission of gamma-ray bursts and their afterglow. However, despite extensive numerical modelling and indirect astrophysical observations, a detailed experimental characterisation of the dynamics of these objects is still at its infancy. Here, we will report on some of the general features of experiments studying the dynamics of electron–positron beams in a fully laser-driven setup

    Laser Wakefield accelerator modelling with variational neural networks

    Get PDF
    A machine learning model was created to predict the electron spectrum generated by a GeVclass laser wakefield accelerator. The model was constructed from variational convolutional neural networks which mapped the results of secondary laser and plasma diagnostics to the generated electron spectrum. An ensemble of trained networks was used to predict the electron spectrum and to provide an estimation of the uncertainty on that prediction. It is anticipated that this approach will be useful for inferring the electron spectrum prior undergoing any process which can alter or destroy the beam. In addition, the model provides insight into the scaling of electron beam properties due to stochastic fluctuations in the laser energy and plasma electron density

    Generation of electron high energy beams with a ring-like structure by a dual stage laser wakefield accelerator

    Get PDF
    The laser wake-field accelerator (LWFA) traditionally produces high brightness, quasi-monoenergetic electron beams with Gaussian-like spatial and angular distributions. In the present work we investigate the generation of ultra-relativistic beams with ring-like structures in the blowout regime of the LWFA using a dual stage accelerator. A density down-ramp triggers injection after the first stage and is used to produce ring-like electron spectra in the 300 – 600 MeV energy range. These well defined, annular beams are observed simultaneously with the on-axis, high energy electron beams, with a divergence of a few milliradians. The rings have quasi-monoenergetic energy spectra with an RMS spread estimated to be less than 5%. Particle-in-cell simulations confirm that off-axis injection provides the electrons with the initial transverse momentum necessary to undertake distinct betatron oscillations within the plasma bubble during their acceleration process
    • 

    corecore