200 research outputs found
The Minimal Supersymmetric Fat Higgs Model
We present a calculable supersymmetric theory of a composite ``fat'' Higgs
boson. Electroweak symmetry is broken dynamically through a new gauge
interaction that becomes strong at an intermediate scale. The Higgs mass can
easily be 200-450 GeV along with the superpartner masses, solving the
supersymmetric little hierarchy problem. We explicitly verify that the model is
consistent with precision electroweak data without fine-tuning. Gauge coupling
unification can be maintained despite the inherently strong dynamics involved
in electroweak symmetry breaking. Supersymmetrizing the Standard Model
therefore does not imply a light Higgs mass, contrary to the lore in the
literature. The Higgs sector of the minimal Fat Higgs model has a mass spectrum
that is distinctly different from the Minimal Supersymmetric Standard Model.Comment: 13 pages, 5 figures, REVTe
Particle Motion and Electromagnetic Fields of Rotating Compact Gravitating Objects with Gravitomagnetic Charge
The exact solution for the electromagnetic field occuring when the
Kerr-Taub-NUT compact object is immersed (i) in an originally uniform magnetic
field aligned along the axis of axial symmetry (ii) in dipolar magnetic field
generated by current loop has been investigated. Effective potential of motion
of charged test particle around Kerr-Taub-NUT gravitational source immersed in
magnetic field with different values of external magnetic field and NUT
parameter has been also investigated. In both cases presence of NUT parameter
and magnetic field shifts stable circular orbits in the direction of the
central gravitating object. Finally we find analytical solutions of Maxwell
equations in the external background spacetime of a slowly rotating magnetized
NUT star. The star is considered isolated and in vacuum, with monopolar
configuration model for the stellar magnetic field.Comment: 18 pages, 6 figures, new results in section 2 added, section 3 is
revised, 3 references are adde
Operator product expansion in static-quark effective field theory: large perturbative correction
We calculate the coefficients of operators with dimensions d <= 7 in the
operator product expansion of correlators of q Gamma Q currents, for the
effective field theory of an infinite-mass quark, Q. Exact two-loop results are
obtained, with an arbitrary gauge group and spacetime dimension, for the
perturbative (d=0) and quark-condensate (d=3) contributions, confirming our
previous result for the anomalous dimension of the current. Leading-order
results are given for light-quark operators with d=5, 6, 7 and gluon operators
with d=4, 6. The existence of a perturbative correction of order 100% precludes
a reliable determination of f_B from non-relativistic sum rules.Comment: Old preprint (a typo in dimension-7 contribution corrected
Impact of the carrier relaxation paths on two-state operation in quantum dot lasers
We study InGaAs QD laser operating simultaneously at ground (GS) and excited (ES) states under 30ns pulsed-pumping and distinguish three regimes of operation depending on the pump current and the carrier relaxation pathways. An increased current leads to an increase in ES intensity and to a decrease in GS intensity (or saturation) for low pump range, as typical for the cascade-like pathway. Both the GS and ES intensities are steadily increased for high current ranges, which prove the dominance of the direct capture pathway. The relaxation oscillations are not pronounced for these ranges. For the mediate currents, the interplay between the both pathways leads to the damped large amplitude relaxation oscillations with significant deviation of the relaxation oscillation frequency from the initial value during the pulse
The effect of slow passage in the pulse-pumped quantum dot laser
In recent years, quantum-dot (QD) semiconductor lasers attract significant interest in many practical applications due to their advantages such as high-power pulse generation because to the high gain efficiency. In this work, the pulse shape of an electrically pumped QD-laser under high current is analyzed. We find that the slow rise time of the pulsed pump may significantly affect the high intensity output pulse. It results in sharp power dropouts and deformation of the pulse profile. We address the effect to dynamical change of the phase-amplitude coupling in the proximity of the excited state (ES) threshold. Under 30ns pulse pumping, the output pulse shape strongly depends on pumping amplitude. At lower currents, which correspond to lasing in the ground state (GS), the pulse shape mimics that of the pump pulse. However, at higher currents the pulse shape becomes progressively unstable. The instability is greatest when in proximity to the secondary threshold which corresponds to the beginning of the ES lasing. After the slow rise stage, the output power sharply drops out. It is followed by a long-time power-off stage and large-scale amplitude fluctuations. We explain these observations by the dynamical change of the alpha-factor in the QD-laser and reveal the role of the slowly rising pumping processes in the pulse shaping and power dropouts at higher currents. The modeling is in very good agreement with the experimental observations
Slow passage through thresholds in quantum dot lasers
A turn on of a quantum dot (QD) semiconductor laser simultaneously operating at the ground state (GS) and excited state (ES) is investigated both experimentally and theoretically. We find experimentally that the slow passage through the two successive laser thresholds may lead to significant delays in the GS and ES turn ons. The difference between the turn-on times is measured as a function of the pump rate of change and reveals no clear power law. This has motivated a detailed analysis of rate equations appropriate for two-state lasing QD lasers. We find that the effective time of the GS turn on follows an -1/2 power law provided that the rate of change is not too small. The effective time of the ES transition follows an -1 power law, but its first order correction in ln is numerically significant. The two turn ons result from different physical mechanisms. The delay of the GS transition strongly depends on the slow growth of the dot population, whereas the ES transition only depends on the time needed to leave a repellent steady state
Dropout dynamics in pulsed quantum dot lasers due to mode jumping
We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes
Search for direct production of a2(1320) and f2(1270) mesons in e+e- annihilation
A search for direct production of C-even resonances a2(1320) and f2(1270) in
e+e- annihilation was performed with SND detector at VEPP-2M e+e- collider. The
upper limits of electronic widths of these mesons were obtained at 90%
confidence level:
Gamma(a2(1320) \to e+e-) < 0.56 eV,
Gamma(f2(1270) \to e+e-) < 0.11 eV.Comment: 6 pages, 5 figures, 1 table. Submitted to Phys. Lett.
- …