1,916 research outputs found

    A novel standard for graphical representation of mental models and processes in cognitive sciences

    Get PDF
    Cognitive Science has positioned itself to be a common ground in which models of mental processes from multiple disciplines merge, situating itself as a common field for new learning theories, or for formalizing existing ones. However, the authors have identified a need for updating the existing graphical representations by incorporating more accessible understanding for teachers and researchers in cross- multidisciplinary fields. In this regard, the present investigation attempts to generate a standard graphical language to represent complex mental processes by the introduction of functional principles, schemes and models that have been successfully used in technical areas such as adaptive control systems, algorithm flow charts, and artificial intelligence. This graphical representation, entitled “Cognitive Functional Representation” (CFR), is further shown to be efficacious in incorporating the essence of complex cognitive theories

    Emulsion Chamber with Big Radiation Length for Detecting Neutrino Oscillations

    Get PDF
    A conceptual scheme of a hybrid-emulsion spectrometer for investigating various channels of neutrino oscillations is proposed. The design emphasizes detection of τ\tau leptons by detached vertices, reliable identification of electrons, and good spectrometry for all charged particles and photons. A distributed target is formed by layers of low-Z material, emulsion-plastic-emulsion sheets, and air gaps in which τ\tau decays are detected. The tracks of charged secondaries, including electrons, are momentum-analyzed by curvature in magnetic field using hits in successive thin layers of emulsion. The τ\tau leptons are efficiently detected in all major decay channels, including \xedec. Performance of a model spectrometer, that contains 3 tons of nuclear emulsion and 20 tons of passive material, is estimated for different experimental environments. When irradiated by the νμ\nu_\mu beam of a proton accelerator over a medium baseline of 1 \sim 1 km/GeV, the spectrometer will efficiently detect either the \omutau and \omue transitions in the mass-difference region of Δm21\Delta m^2 \sim 1 eV2^2, as suggested by the results of LSND. When exposed to the neutrino beam of a muon storage ring over a long baseline of \sim 10-20 km/GeV, the model detector will efficiently probe the entire pattern of neutrino oscillations in the region Δm2102103\Delta m^2 \sim 10^{-2}-10^{-3} eV2^2, as suggested by the data on atmospheric neutrinos.Comment: 34 pages, 8 figure

    Tau Lepton Mixing with Charginos and its Effects on Chargino Searches at e+e- Colliders

    Get PDF
    In bilinear R-Parity violating models where a term \epsilon_3L_3H_2 is introduced in the superpotential, the tau lepton can mix with charginos. We show that this mixing is fully compatible with LEP1 precision measurements of the Z\tau\tau and W\tau\nu_\tau couplings even for large values of \epsilon_3 and of the induced vacuum expectation value v_3 of the tau-sneutrino. The single production of charginos at e+e- colliders is possible in this case and we present numerical values of the cross-section at LEP1, LEP2 and an NLC. We find maximum values of 10 pb at LEP1 and 1 fb at NLC, while the corresponding values at LEP2 are too small to observe.Comment: 16 pages (including 7 figures), LaTex, uses axodraw.sty (included

    Holographic Dark Energy Model and Scalar-Tensor Theories

    Full text link
    We study the holographic dark energy model in a generalized scalar tensor theory. In a universe filled with cold dark matter and dark energy, the effect of potential of the scalar field is investigated in the equation of state parameter. We show that for a various types of potentials, the equation of state parameter is negative and transition from deceleration to acceleration expansion of the universe is possible.Comment: 11 pages, no figure. To appear in General Relativity and Gravitatio

    Modelling of InSAR (LOS) changes by means of 3D extended pressured bodies with free geometry. Application to Campi Flegrei.

    Get PDF
    InSAR measures can provide information about changes in distance between the ground and the satellite in radar line-of-sight (LOS) direction. Sometimes, as in the case of volcanic activity, the corresponding ground deformations can be modeled by means of pressure and/or mass sources. Usually, point sources and regular prolate or oblate bodies are used as source geometry for deformation. In this communication, we show a new method for non-linear inversion of position and gravity changes as produced by extended bodies with a free geometry. Their structures are described as aggregation of elemental sources with anomalous density and pressure, and they are modeled to fit the whole data and to keep some regularity conditions. A growth process permits to build general geometrical configurations. The method is tested by application to data of gravity and InSAR (LOS data for ascending and descending orbits) for the volcanic area of Campi Flegrei (Italy). Results are drawn with respect a structural gravimetric model and compared with previous models

    Revisiting the distribution of oceanic N<sub>2</sub> fixation and estimating diazotrophic contribution to marine production

    Get PDF
    Marine N2 fixation supports a significant portion of oceanic primary production by making N2 bioavailable to planktonic communities, in the process influencing atmosphere-ocean carbon fluxes and our global climate. However, the geographical distribution and controlling factors of marine N2 fixation remain elusive largely due to sparse observations. Here we present unprecedented high-resolution underway N2 fixation estimates across over 6000 kilometers of the western North Atlantic. Unexpectedly, we find increasing N2 fixation rates from the oligotrophic Sargasso Sea to North America coastal waters, driven primarily by cyanobacterial diazotrophs. N2 fixation is best correlated to phosphorus availability and chlorophyll-a concentration. Globally, intense N2 fixation activity in the coastal oceans is validated by a meta-analysis of published observations and we estimate the annual coastal N2 fixation flux to be 16.7 Tg N. This study broadens the biogeography of N2 fixation, highlights the interplay of regulating factors, and reveals thriving diazotrophic communities in coastal waters with potential significance to the global nitrogen and carbon cycles

    Evidence for extra radiation? Profile likelihood versus Bayesian posterior

    Full text link
    A number of recent analyses of cosmological data have reported hints for the presence of extra radiation beyond the standard model expectation. In order to test the robustness of these claims under different methods of constructing parameter constraints, we perform a Bayesian posterior-based and a likelihood profile-based analysis of current data. We confirm the presence of a slight discrepancy between posterior- and profile-based constraints, with the marginalised posterior preferring higher values of the effective number of neutrino species N_eff. This can be traced back to a volume effect occurring during the marginalisation process, and we demonstrate that the effect is related to the fact that cosmic microwave background (CMB) data constrain N_eff only indirectly via the redshift of matter-radiation equality. Once present CMB data are combined with external information about, e.g., the Hubble parameter, the difference between the methods becomes small compared to the uncertainty of N_eff. We conclude that the preference of precision cosmological data for excess radiation is "real" and not an artifact of a specific choice of credible/confidence interval construction.Comment: 10 pages, 4 figures; v2: discussion section expanded and references added, version accepted for publication by JCA

    Present status of IGEX dark matter search at Canfranc Underground Laboratory

    Get PDF
    One IGEX 76Ge double-beta decay detector is currently operating in the Canfranc Underground Laboratory in a search for dark matter WIMPs, through the Ge nuclear recoil produced by the WIMP elastic scattering. A new exclusion plot has been derived for WIMP-nucleon spin-independent interactions. To obtain this result, 40 days of data from the IGEX detector (energy threshold 4 keV), recently collected, have been analyzed. These data improve the exclusion limits derived from all the other ionization germanium detectors in the mass region from 20 GeV to 200 GeV, where a WIMP supposedly responsible for the annual modulation effect reported by the DAMA experiment would be located. The new IGEX exclusion contour enters, by the first time, the DAMA region by using only raw data, with no background discrimination, and excludes its upper left part. It is also shown that with a moderate improvement of the detector performances, the DAMA region could be fully explored.Comment: 3 pages, 3 figures, talk delivered at the 7th International Workshop on Topics in Astroparticle and Underground Physics (TAUP 2001), September 2001, Laboratori Nazionali del Gran Sasso, Italy (to appear in the Conference Proceedings, Nucl. Phys. B (Proc. Suppl.)

    The Influence of Free Quintessence on Gravitational Frequency Shift and Deflection of Light with 4D momentum

    Full text link
    Based on the 4D momentum, the influence of quintessence on the gravitational frequency shift and the deflection of light are examined in modified Schwarzschild space. We find that the frequency of photon depends on the state parameter of quintessence wqw_q: the frequency increases for 1<wq<1/3-1<w_q<-1/3 and decreases for 1/3<wq<0-1/3<w_q<0. Meanwhile, we adopt an integral power number aa (a=3ωq+2a = 3\omega_q + 2) to solve the orbital equation of photon. The photon's potentials become higher with the decrease of ωq\omega_q. The behavior of bending light depends on the state parameter ωq\omega_q sensitively. In particular, for the case of ωq=1\omega_q = -1, there is no influence on the deflection of light by quintessence. Else, according to the H-masers of GP-A redshift experiment and the long-baseline interferometry, the constraints on the quintessence field in Solar system are presented here.Comment: 12 pages, 2 figures, 4 tables. European Physical Journal C in pres

    Improved constraints on WIMPs from the International Germanium Experiment IGEX

    Get PDF
    One IGEX 76Ge double-beta decay detector is currently operating in the Canfranc Underground Laboratory in a search for dark matter WIMPs, through the Ge nuclear recoil produced by the WIMP elastic scattering. A new exclusion plot, has been derived for WIMP-nucleon spin-independent interactions. To obtain this result, 40 days of data from the IGEX detector (energy threshold E \~ 4 keV), recently collected, have been analyzed. These data improve the exclusion limits derived from all the other ionization germanium detectors in the mass region from 20 GeV to 200 GeV, where a WIMP supposedly responsible for the annual modulation effect reported by the DAMA experiment would be located. The new IGEX exclusion contour enters, by the first time, the DAMA region by using only raw data, with no background discrimination, and excludes its upper left part. It is also shown that with a moderate improvement of the detector performances, the DAMA region could be fully explored.Comment: 14 pages, 8 figures, submitted to Physics Letters B (revised version after referee's comments, some figures added
    corecore