16 research outputs found

    Separation of CO2/CH4 through Carbon Tubular Membranes: Effect of Carbonization Temperature

    Get PDF
    Carbon membranes have received much attention as advance materials in the gas separation technology due to their superior gas permeation performance and thermal and chemical stability. In order to increase the mechanical strength of the membrane, supported carbon membrane were produced using ceramic tube as support layer. Carbon tubular membranes were produced by carbonizing polymeric tubular membrane under different process parameter. In this study, carbon tubular membranes originating from Matrimid were prepared and characterized n term of its gas permeation properties. The preparation method involved dip-coating of the ceramic tubes with a Matrimid-based solution. The carbon tubular membranes were obtained by carbonization of the resultant polymeric tubular membrane under Argon gas flow in the horizontal tube furnace. The effects of the carbonization temperature on the gas permeation performance were investigated. Pure gas permeation tests were performed using CO2 and CH4 at room temperature with pressure 8 bars. The permeance and selectivity data indicate that the highest CO2/CH4 selectivity of 87.30 was obtained for carbon tubular membrane prepared at carbonization temperature of 850 ºC

    Development of a flexible customized compression garment design system

    Get PDF
    The paper investigated a new method that can be used to develop a 3D customized compression garment model for athlete. The developed system is able to design the compression garment based on the athlete body data, type of fabric and pressure for their top performance. The outcome of the research is a system that not only can design a customized compression garment, but also flexible enough to be used to create a variety of compression garment that can exert different pressure

    CO2 separation through carbon tubular membranes: effect of polymer composition

    Get PDF
    Carbon membrane can be regarded as the future of the separation media in gas separation process due to its high gas separation performance, ease process ability, and moderate energy requirement as compared to conventional separation. In this study, the influence of the polymer (Matrimid 5218) composition; 5wt%, 10wt%, 13wt%, 15wt%, and 18wt%, on the gas permeation properties was investigated. The supported polymer precursor was prepared by coated the polymer solution on TiO2 –ZrO2 tubes by using dip-coating method before undergoes carbonization at 850°C under Nitrogen atmosphere. Pure gas permeation tests were performed by using CH4, and CO2, at room temperature and pressure of 8 bars. It was found that polymer composition plays a significant role in the carbon membrane preparation. The highest CO2/CH4 selectivity of 83.30 was obtained for carbon membrane prepared from 15wt% polymer composition

    PREPARATION AND CHARACTERIZATION OF LAFEO3 USING DUAL-COMPLEXING AGENTS FOR PHOTODEGRADATION OF HUMIC ACID

    Get PDF
    Humic Acid (HA) is considered as one of the major components that represents a major fraction of dissolved in natural water. Complex mixture of organic compounds on HA lead to the problematic issue for municipal wastewater treatment plants such as undesirable taste, colour to drinking water and fouling in pipe line. The reaction of HA with chlorine during disinfection processes would produce carcinogenic by-products like trihalomethanes. In this study, for the first time, LaFeO3 photocatalyst was successfully synthesized via gel-combustion method using combined glucose/citric acid as chelating agents and was further calcined at 400°C. The photocatalytic activity of samples was investigated by degradation of Humic Acid (HA) in water under visible light irradiation. Results proved that the photocatalytic degradation of HA is dependent on the catalyst dosage, initial concentration of HA, and oxygen availability in the aeration. The photocatalytic degradation also was enhanced by high surface area of synthesized LaFeO3 obtained by amorphous structure. Overall, the percentage removal of HA by varying the catalyst dosage are in the order of 88%, 90%, 98% and 97% for 0.6 g/L, 0.8 g/L, 1.0 g/L, and 1.2 g/L respectively for an irradiation period of 120 minutes. Next, the removal of HA by manipulating its initial concentration are 98%, 90%, 85% and 86% with respect to 10 g/L, 20 g/L, 30 g/L and 40 g/L taken for 120 minutes. Overall, the optimal operational parameters for the removal of HA of catalyst dosage is 1.0 g/L performing at 98%, for initial concentration of HA which was removed efficiently at 97% is 10 g/L and via aeration in this study was about 93%, after 120 min of irradiation times

    A New Invention Method to Determine the Reduction Factor for Low Fabric Tension Properties for Head Garment Fabrication

    No full text
    This paper proposes a new method to determine the reduction factor for producing a head garment with specified targeted pressure output. Pressure garment fabric mostly supplied to the local hospitals with no information of the material properties and the fabrication method generally used a single reduction factor at various body segments. Reduction factor defined as the percentage of reducing the garment size from the original circumference of the body part which contributes to the compression. The objective of this study is to compare the fabrication method of head garment using reduction factor equation from previous research with the new proposed method. The equation to predict the reduction factor requires the parameter of the fabric tension which is obtained from tensile test and radius of curvature of the human body parts. In the new proposed method, a 3D scanning was used for data acquisition to obtain the geometry of the head area. The pressure outputs are measured by a pressure measurement system developed from Flexiforce sensor and Arduino circuit board. By using the equation, the result shows the calculated reduction factor produced an extremely tight head garment compared to the conducted experiments which manage to produce an adequate reduction factor with a targeted pressure output of 20mmHg. The result of the experiment indicates that the reduction factor ranging from 17% to 23% compared to the equation which produces 20% to 47% of reduction factor. As an additional, the proposed experimental method can be used for different type of pressure garment fabrics in order to obtain the relationship between the reduction factor and the circumference of the body parts

    Computer Aided Facial Prosthetics Manufacturing System

    No full text
    Facial deformities can impose burden to the patient. There are many solutions for facial deformities such as plastic surgery and facial prosthetics. However, current fabrication method of facial prosthetics is high-cost and time consuming. This study aimed to identify a new method to construct a customized facial prosthetic. A 3D scanner, computer software and 3D printer were used in this study. Results showed that the new developed method can be used to produce a customized facial prosthetics. The advantages of the developed method over the conventional process are low cost, reduce waste of material and pollution in order to meet the green concept

    Pressure generated from head garment with padding insert used for hypertrophic scar treatment

    No full text
    Pressure garment is a standard non-surgical treatment for hypertrophic scar caused by burn injury. However, the main problem identified was the non-uniform pressure distribution due to the complexity of the contour at the facial area. Therefore, padding was developed to produce more efficient pressure distribution. This study used 3D scanning apparatus to obtain the cross sections of the facial area. The padding was developed using 3D modeling software which act as an insert to fill the gaps at the contact area of the garment and facial areas. The result shows that by inserting the padding underneath the garment, the pressure outputs indicate an acceptable pressure range with the suitable reduction factor for the head garment fabrication

    The effect of polymer composition on CO2/CH4 separation of supported carbon membrane

    No full text
    Recently, membrane technology has attracted vast attention from many scientists and engineers, particularly from the industrial area. The membrane for gas separation is favoured due to its economically feasibility and high separation performance with respect to gas permeability and selectivity. In this study, the effect of different polymer concentrations (5, 10, 13, 15 and 18 wt%) on the gas permeation properties of CO2/CH4 separation was investigated. Matrimid 5218 was chosen as the based polymer for tubular carbon membrane preparation owing to its excellent membrane properties (i.e. high mechanical and thermal stability) in order to fulfil the membrane requirement for high gas separation performance. The commercialised tubular membrane was dip-coated into Matrimid/NMP solution and then proceed with carbonisation process at the optimum condition with a heating rate of 2 K/min and under Argon gas flow rate at 200 mL/min at temperature of 1,123.15 K by using argon gas. The pure gas permeation tested for both CO2 and CH4 was carried out under room temperature at pressure controlled at 800 kPa. From the experimental results, the tubular membrane made of 15 wt % Matrimid performed the highest CO2/CH4 selectivity (87.34 %) as compared to the other membranes. The excellent performance obtained from the membrane could be attributed by the micropores formation, where the chain of the polymer had increased its packing density. Thus, membrane porosity can be increased by increasing the polymer concentration in the solution
    corecore