13 research outputs found

    Urgent Considerations for the Neuro-oncologic Treatment of Patients with Gliomas During the COVID-19 Pandemic.

    Get PDF
    The COVID-19 outbreak is posing unprecedented risks and challenges for all communities and healthcare systems, worldwide. There are unique considerations for many adult patients with gliomas who are vulnerable to the novel coronavirus due to older age and immunosuppression. As patients with terminal illnesses, they present ethical challenges for centers that may need to ration access to ventilator care due to insufficient critical care capacity. It is urgent for the neuro-oncology community to develop a pro-active and coordinated approach to the care of adults with gliomas in order to provide them with the best possible oncologic care while also reducing their risk of viral infection during times of potential healthcare system failure. In this article, we present an approach developed by an international multi-disciplinary group to optimize the care of adults with gliomas during this pandemic. We recommend measures to promote strict social distancing and minimize exposures for patients, address risk and benefit of all therapeutic interventions, pro-actively develop end of life plans, educate patients and caregivers and ensure the health of the multi-disciplinary neuro-oncology workforce. This pandemic is already changing neuro-oncologic care delivery around the globe. It is important to highlight opportunities to maximize the benefit and minimize the risk of glioma management during this pandemic and potentially, in the future

    A Phase Ib/II, open-label, multicenter study of INC280 (capmatinib) alone and in combination with buparlisib (BKM120) in adult patients with recurrent glioblastoma

    Get PDF
    Purpose: To estimate the maximum tolerated dose (MTD) and/or identify the recommended Phase II dose (RP2D) for combined INC280 and buparlisib in patients with recurrent glioblastoma with homozygous phosphatase and tensin homolog (PTEN) deletion, mutation or protein loss. Methods: This multicenter, open-label, Phase Ib/II study included adult patients with glioblastoma with mesenchymal-epithelial transcription factor (c-Met) amplification. In Phase Ib, patients received INC280 as capsules or tablets in combination with buparlisib. In Phase II, patients received INC280 only. Response was assessed centrally using Response Assessment in Neuro-Oncology response criteria for high-grade gliomas. All adverse events (AEs) were recorded and graded. Results: 33 patients entered Phase Ib, 32 with altered PTEN. RP2D was not declared due to potential drug–drug interactions, which may have resulted in lack of efficacy; thus, Phase II, including 10 patients, was continued with INC280 monotherapy only. Best response was stable disease in 30% of patients. In the selected patient population, enrollment was halted due to limited activity with INC280 monotherapy. In Phase Ib, the most common treatment-related AEs were fatigue (36.4%), nausea (30.3%) and increased alanine aminotransferase (30.3%). MTD was identified at INC280 Tab 300 mg twice daily + buparlisib 80 mg once daily. In Phase II, the most common AEs were headache (40.0%), constipation (30.0%), fatigue (30.0%) and increased lipase (30.0%). Conclusion: The combination of INC280/buparlisib resulted in no clear activity in patients with recurrent PTEN-deficient glioblastoma. More stringent molecular selection strategies might produce better outcomes. Trial registration: NCT01870726

    Semiautomated Volumetric Measurement on Postcontrast MR Imaging for Analysis of Recurrent and Residual Disease in Glioblastoma Multiforme

    No full text
    Background and purposeA limitation in postoperative monitoring of patients with glioblastoma is the lack of objective measures to quantify residual and recurrent disease. Automated computer-assisted volumetric analysis of contrast-enhancing tissue represents a potential tool to aid the radiologist in following these patients. In this study, we hypothesize that computer-assisted volumetry will show increased precision and speed over conventional 1D and 2D techniques in assessing residual and/or recurrent tumor.Materials and methodsThis retrospective study included patients with native glioblastomas with MR imaging performed at 24-48 hours following resection and 2-4 months postoperatively. 1D and 2D measurements were performed by 2 neuroradiologists with Certificates of Added Qualification. Volumetry was performed by using manual segmentation and computer-assisted volumetry, which combines region-based active contours and a level set approach. Tumor response was assessed by using established 1D, 2D, and volumetric standards. Manual and computer-assisted volumetry segmentation times were compared. Interobserver correlation was determined among 1D, 2D, and volumetric techniques.ResultsTwenty-nine patients were analyzed. Discrepancy in disease status between 1D and 2D compared with computer-assisted volumetry was 10.3% (3/29) and 17.2% (5/29), respectively. The mean time for segmentation between manual and computer-assisted volumetry techniques was 9.7 minutes and <1 minute, respectively (P < .01). Interobserver correlation was highest for volumetric measurements (0.995; 95% CI, 0.990-0.997) compared with 1D (0.826; 95% CI, 0.695-0.904) and 2D (0.905; 95% CI, 0.828-0.948) measurements.ConclusionsComputer-assisted volumetry provides a reproducible and faster volumetric assessment of enhancing tumor burden, which has implications for monitoring disease progression and quantification of tumor burden in treatment trials

    Joint Final Report of EORTC 26951 and RTOG 9402: Phase III Trials With Procarbazine, Lomustine, and Vincristine Chemotherapy for Anaplastic Oligodendroglial Tumors

    No full text
    Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the basis of the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported. Anaplastic oligodendroglial tumors (AOTs) are chemotherapy-sensitive brain tumors. We report the final very long-term survival results from European Organization for the Research and Treatment of Cancer 26951 and Radiation Therapy Oncology Group 9402 phase III trials initiated in 1990s, which both studied radiotherapy with/without neo/adjuvant procarbazine, lomustine, and vincristine (PCV) for newly diagnosed anaplastic oligodendroglial tumors. The median follow-up duration in both was 18-19 years. For European Organization for the Research and Treatment of Cancer 26951, median, 14-year, and probable 20-year overall survival rates without versus with PCV were 2.6 years, 13.4%, and 10.1% versus 3.5 years, 25.1%, and 16.8% (N = 368 overall; hazard ratio [HR] 0.78; 95% CI, 0.63 to 0.98; P = .033), with 1p19q codeletion 9.3 years, 26.2%, and 13.6% versus 14.2 years, 51.0%, and 37.1% (n = 80; HR 0.60; 95% CI, 0.35 to 1.03; P = .063), respectively. For Radiation Therapy Oncology Group 9402, analogous results were 4.8 years, 16.5%, and 11.2% versus 4.8 years, 29.1%, and 24.6% (N = 289 overall; HR 0.79; 95% CI, 0.61 to 1.03; P = .08), with codeletion 7.3 years, 25.0%, and 14.9% versus 13.2 years, 46.1%, and 37% (n = 125; HR 0.61; 95% CI, 0.40 to 0.94; P = .02), respectively. With that, the studies show similar long-term survival even without tumor recurrence in a significant proportion of patients after first-line treatment with radiotherapy/PCV.Neurolog
    corecore