319 research outputs found

    Associations between incident breast cancer and ambient concentrations of nitrogen dioxide from a national land use regression model in the Canadian National Breast Screening Study

    Get PDF
    Background: Air pollution has been classified as a human carcinogen based largely on epidemiological studies of lung cancer. Recent research suggests that exposure to ambient air pollution increases the risk of female breast cancer especially in premenopausal women. Methods: Our objective was to determine the association between residential exposure to ambient nitrogen dioxide (NO2) and newly diagnosed cases of invasive breast cancer in a cohort of 89,247 women enrolled in the Canadian National Breast Screening Study between 1980 and 1985.

    Authoring Multi-Actor Behaviors in Crowds With Diverse Personalities

    Get PDF
    Multi-actor simulation is critical to cinematic content creation, disaster and security simulation, and interactive entertainment. A key challenge is providing an appropriate interface for authoring high-fidelity virtual actors with featurerich control mechanisms capable of complex interactions with the environment and other actors. In this chapter, we present work that addresses the problem of behavior authoring at three levels: Individual and group interactions are conducted in an event-centric manner using parameterized behavior trees, social crowd dynamics are captured using the OCEAN personality model, and a centralized automated planner is used to enforce global narrative constraints on the scale of the entire simulation. We demonstrate the benefits and limitations of each of these approaches and propose the need for a single unifying construct capable of authoring functional, purposeful, autonomous actors which conform to a global narrative in an interactive simulation

    WMAPing out Supersymmetric Dark Matter and Phenomenology

    Full text link
    The recent WMAP data provide a rather restricted range of the Cold Dark Matter (CDM) density ΩCDMh2 \Omega_{CDM} h^2 of unprecedented accuracy. We combine these new data along with data from BNL E821 experiment measuring (gμ2) {(g_{\mu}-2)}, the {b\goes s \gamma} branching ratio and the light Higgs boson mass bound from LEP, to update our analysis of the allowed boundaries in the parameter space of the Constrained Minimal Supersymmetric Standard Model (CMSSM). The prospects of measuring Supersymmetry at LHC look like a very safe bet, and the potential of discovering SUSY particles at a s=1.1TeV \sqrt{s} = 1.1 \mathrm{TeV} linear collider is enhanced considerably. The implications for Dark Matter direct searches are also discussed.Comment: 12 pages LaTeX, 5 eps figures included, references adde

    Nuclear Shadowing in DIS: Numerical Solution of the Evolution Equation for the Green Function

    Get PDF
    Within a light-cone QCD formalism based on the Green function technique incorporating color transparency and coherence length effects we study nuclear shadowing in deep-inelastic scattering at moderately small Bjorken x_{Bj}. Calculations performed so far were based only on approximations leading to an analytical harmonic oscillatory form of the Green function. We present for the first time an exact numerical solution of the evolution equation for the Green function using realistic form of the dipole cross section and nuclear density function. We compare numerical results for nuclear shadowing with previous predictions and discuss differences.Comment: 21 pages including 3 figures; a small revision of the tex

    Probing mSUGRA via the Extreme Universe Space Observatory

    Full text link
    An analysis is carried out within mSUGRA of the estimated number of events originating from upward moving ultra-high energy neutralinos that could be detected by the Extreme Universe Space Observatory (EUSO). The analysis exploits a recently proposed technique that differentiates ultra-high energy neutralinos from ultra-high energy neutrinos using their different absorption lengths in the Earth's crust. It is shown that for a significant part of the parameter space, where the neutralino is mostly a Bino and with squark mass 1\sim 1 TeV, EUSO could see ultra-high energy neutralino events with essentially no background. In the energy range 10^9 GeV < E < 10^11 GeV, the unprecedented aperture of EUSO makes the telescope sensitive to neutralino fluxes as low as 1.1 \times 10^{-6} (E/GeV)^{-1.3} GeV^{-1} cm^{-2} yr^{-1} sr^{-1}, at the 95% CL. Such a hard spectrum is characteristic of supermassive particles' NN-body hadronic decay. The case in which the flux of ultra-high energy neutralinos is produced via decay of metastable heavy particles with uniform distribution throughout the universe is analyzed in detail. The normalization of the ratio of the relics' density to their lifetime has been fixed so that the baryon flux produced in the supermassive particle decays contributes to about 1/3 of the events reported by the AGASA Collaboration below 10^{11} GeV, and hence the associated GeV gamma-ray flux is in complete agreement with EGRET data. For this particular case, EUSO will collect between 4 and 5 neutralino events (with 0.3 of background) in ~ 3 yr of running. NASA's planned mission, the Orbiting Wide-angle Light-collectors (OWL), is also briefly discussed in this context.Comment: Some discussion added, final version to be published in Physical Review

    Supersymmetric Benchmarks with Non-Universal Scalar Masses or Gravitino Dark Matter

    Full text link
    We propose and examine a new set of benchmark supersymmetric scenarios, some of which have non-universal Higgs scalar masses (NUHM) and others have gravitino dark matter (GDM). The scalar masses in these models are either considerably larger or smaller than the narrow range allowed for the same gaugino mass m_{1/2} in the constrained MSSM (CMSSM) with universal scalar masses m_0 and neutralino dark matter. The NUHM and GDM models with larger m_0 may have large branching ratios for Higgs and/or ZZ production in the cascade decays of heavier sparticles, whose detection we discuss. The phenomenology of the GDM models depends on the nature of the next-to-lightest supersymmetric particle (NLSP), which has a lifetime exceeding 10^4 seconds in the proposed benchmark scenarios. In one GDM scenario the NLSP is the lightest neutralino \chi, and the supersymmetric collider signatures are similar to those in previous CMSSM benchmarks, but with a distinctive spectrum. In the other GDM scenarios based on minimal supergravity (mSUGRA), the NLSP is the lighter stau slepton {\tilde \tau}_1, with a lifetime between ~ 10^4 and 3 X 10^6 seconds. Every supersymmetric cascade would end in a {\tilde \tau}_1, which would have a distinctive time-of-flight signature. Slow-moving {\tilde \tau}_1's might be trapped in a collider detector or outside it, and the preferred detection strategy would depend on the {\tilde \tau}_1 lifetime. We discuss the extent to which these mSUGRA GDM scenarios could be distinguished from gauge-mediated models.Comment: 52 pages LaTeX, 13 figure

    What if Supersymmetry Breaking Unifies beyond the GUT Scale?

    Full text link
    We study models in which soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, MinM_{in}, above the GUT scale, \mgut. We assume that the scalar masses and gaugino masses have common values, m0m_0 and m1/2m_{1/2} respectively, at MinM_{in}. We use the renormalization-group equations of the minimal supersymmetric SU(5) GUT to evaluate their evolutions down to \mgut, studying their dependences on the unknown parameters of the SU(5) superpotential. After displaying some generic examples of the evolutions of the soft supersymmetry-breaking parameters, we discuss the effects on physical sparticle masses in some specific examples. We note, for example, that near-degeneracy between the lightest neutralino and the lighter stau is progressively disfavoured as MinM_{in} increases. This has the consequence, as we show in (m1/2,m0)(m_{1/2}, m_0) planes for several different values of tanβ\tan \beta, that the stau coannihilation region shrinks as MinM_{in} increases, and we delineate the regions of the (Min,tanβ)(M_{in}, \tan \beta) plane where it is absent altogether. Moreover, as MinM_{in} increases, the focus-point region recedes to larger values of m0m_0 for any fixed tanβ\tan \beta and m1/2m_{1/2}. We conclude that the regions of the (m1/2,m0)(m_{1/2}, m_0) plane that are commonly favoured in phenomenological analyses tend to disappear at large MinM_{in}.Comment: 24 pages with 11 eps figures; references added, some figures corrected, discussion extended and figure added; version to appear in EPJ

    Slepton and Neutralino/Chargino Coannihilations in MSSM

    Get PDF
    Within the low-energy effective Minimal Supersymmetric extension of Standard Model (effMSSM) we calculated the neutralino relic density taking into account slepton-neutralino and neutralino-chargino/neutralino coannihilation channels. We performed comparative study of these channels and obtained that both of them give sizable contributions to the reduction of the relic density. Due to these coannihilation processes some models (mostly with large neutralino masses) enter into the cosmologically interesting region for relic density, but other models leave this region. Nevertheless, in general, the predictions for direct and indirect dark matter detection rates are not strongly affected by these coannihilation channels in the effMSSM.Comment: 12 pages, 9 figures, revte

    Squark-, Slepton- and Neutralino-Chargino coannihilation effects in the low-energy effective MSSM

    Get PDF
    Within the low-energy effective Minimal Supersymmetric extension of the Standard Model (effMSSM) we calculate the neutralino relic density taking into account slepton-neutralino, squark-neutralino and neutralino/chargino- neutralino coannihilation channels. By including squark (stop and sbottom) coannihilation channels we extend our comparative study to all allowed coannihilations and obtain the general result that all of them give sizable contributions to the reduction of the neutralino relic density. Due to these coannihilation processes some models (mostly with large neutralino masses) enter into the cosmologically interesting region for relic density, but other models leave this region. Nevertheless, in general, the predictions for direct and indirect dark matter detection rates are not strongly affected by these coannihilation channels in the effMSSM.Comment: 14 pages, 10 figures, corrected and to be published in Phys. Rev.

    Colliders and Cosmology

    Full text link
    Dark matter in variations of constrained minimal supersymmetric standard models will be discussed. Particular attention will be given to the comparison between accelerator and direct detection constraints.Comment: Submitted for the SUSY07 proceedings, 15 pages, LaTex, 26 eps figure
    corecore