349 research outputs found

    On-shell recursion relations for all Born QCD amplitudes

    Full text link
    We consider on-shell recursion relations for all Born QCD amplitudes. This includes amplitudes with several pairs of quarks and massive quarks. We give a detailed description on how to shift the external particles in spinor space and clarify the allowed helicities of the shifted legs. We proof that the corresponding meromorphic functions vanish at z --> infinity. As an application we obtain compact expressions for helicity amplitudes including a pair of massive quarks, one negative helicity gluon and an arbitrary number of positive helicity gluons.Comment: 30 pages, minor change

    No triangles on the moduli space of maximally supersymmetric gauge theory

    Full text link
    Maximally supersymmetric gauge theory in four dimensions has a remarkably simple S-matrix at the origin of its moduli space at both tree and loop level. This leads to the question what, if any, of this structure survives at the complement of this one point. Here this question is studied in detail at one loop for the branch of the moduli space parameterized by a vacuum expectation value for one complex scalar. Motivated by the parallel D-brane picture of spontaneous symmetry breaking a simple relation is demonstrated between the Lagrangian of broken super Yang-Mills theory and that of its higher dimensional unbroken cousin. Using this relation it is proven both through an on- as well as an off-shell method there are no so-called triangle coefficients in the natural basis of one-loop functions at any finite point of the moduli space for the theory under study. The off-shell method yields in addition absence of rational terms in a class of theories on the Coulomb branch which includes the special case of maximal supersymmetry. The results in this article provide direct field theory evidence for a recently proposed exact dual conformal symmetry motivated by the AdS/CFT correspondence.Comment: 39 pages, 4 figure

    Unitarity, BRST Symmetry and Ward Identities in Orbifold Gauge Theories

    Full text link
    We discuss the use of BRST symmetry and the resulting Ward identities for orbifold gauge theories as consistency checks in an arbitrary number of dimensions. We verify that both the usual orbifold symmetry breaking and the recently proposed Higgsless symmetry breaking are consistent with the nilpotency of the BRST transformation. Imposing the Ward identities resulting from the BRST symmetry on the 4-point functions of theory, we obtain relations on the coupling constants that are shown to be equivalent to the conditions for tree level unitarity. We present the complete set of these sum rules also for inelastic scattering and discuss applications to 6-dimensional models and to incomplete matter multiplets on orbifold fixed points.Comment: 34 pages, LaTeX (feynmf.sty, url.sty and thophys.sty included), v2:references added, v3:typos corrected, sec.3 revise

    Multigluon tree amplitudes with a pair of massive fermions

    Full text link
    We consider the calculation of n-point multigluon tree amplitudes with a pair of massive fermions in QCD. We give the explicit transformation rules of this kind of massive fermion-pair amplitudes with respect to different reference momenta and check the correctness of them by SUSY Ward identities. Using these rules and onshell BCFW recursion relation, we calculate the analytic results of several n-point multigluon amplitudes.Comment: 15page

    High precision fundamental constants at the TeV scale

    Full text link
    This report summarizes the proceedings of the 2014 Mainz Institute for Theoretical Physics (MITP) scientific program on "High precision fundamental constants at the TeV scale". The two outstanding parameters in the Standard Model dealt with during the MITP scientific program are the strong coupling constant αs\alpha_s and the top-quark mass mtm_t. Lacking knowledge on the value of those fundamental constants is often the limiting factor in the accuracy of theoretical predictions. The current status on αs\alpha_s and mtm_t has been reviewed and directions for future research have been identified.Comment: 57 pages, 24 figures, pdflate

    A direct proof of the CSW rules

    Full text link
    Using recursion methods similar to those of Britto, Cachazo, Feng and Witten (BCFW) a direct proof of the CSW rules for computing tree-level gluon amplitudes is given.Comment: 11 pages, uses axodraw.st

    Four-fermion production near the W pair production threshold

    Full text link
    We perform a dedicated study of the four-fermion production process e- e+ -> mu- nubar_mu u dbar X near the W pair-production threshold in view of the importance of this process for a precise measurement of the W boson mass. Accurate theoretical predictions for this process require a systematic treatment of finite-width effects. We use unstable-particle effective field theory (EFT) to perform an expansion in the coupling constants, GammaW/MW, and the non-relativistic velocity v of the W boson up to next-to-leading order in GammaW/MW ~ alpha_ew ~ v^2. We find that the dominant theoretical uncertainty in MW is currently due to an incomplete treatment of initial-state radiation. The remaining uncertainty of the NLO EFT calculation translates into delta MW ~ 10-15 MeV, and to about 5 MeV with additional input from the NLO four-fermion calculation in the full theory.Comment: 53 pages, v2: version to be published, inessential modification

    Massive amplitudes on the Coulomb branch of N=4 SYM

    Full text link
    We initiate a systematic study of amplitudes with massive external particles on the Coulomb-branch of N=4 super Yang Mills theory: 1) We propose that (multi-)soft-scalar limits of massless amplitudes at the origin of moduli space can be used to determine Coulomb-branch amplitudes to leading order in the mass. This is demonstrated in numerous examples. 2) We find compact explicit expressions for several towers of tree-level amplitudes, including scattering of two massive W-bosons with any number of positive helicity gluons, valid for all values of the mass. 3) We present the general structure of superamplitudes on the Coulomb branch. For example, the n-point "MHV-band" superamplitude is proportional to a Grassmann polynomial of mixed degree 4 to 12, which is uniquely determined by supersymmetry. We find explicit tree-level superamplitudes for this MHV band and for other simple sectors of the theory. 4) Dual conformal generators are constructed, and we explore the dual conformal properties of the simplest massive amplitudes. Our compact expressions for amplitudes and superamplitudes should be of both theoretical and phenomenological interest; in particular the tree-level results carry over to truncations of the theory with less supersymmetry.Comment: 29 pages, 1 figur

    Monte Carlo Exploration of Warped Higgsless Models

    Full text link
    We have performed a detailed Monte Carlo exploration of the parameter space for a warped Higgsless model of electroweak symmetry breaking in 5 dimensions. This model is based on the SU(2)L×SU(2)R×U(1)BLSU(2)_L\times SU(2)_R\times U(1)_{B-L} gauge group in an AdS5_5 bulk with arbitrary gauge kinetic terms on both the Planck and TeV branes. Constraints arising from precision electroweak measurements and collider data are found to be relatively easy to satisfy. We show, however, that the additional requirement of perturbative unitarity up to the cut-off, 10\simeq 10 TeV, in WL+WLW_L^+W_L^- elastic scattering in the absence of dangerous tachyons eliminates all models. If successful models of this class exist, they must be highly fine-tuned.Comment: 26 pages, 7 figures; new fig and additional text adde

    NLL soft and Coulomb resummation for squark and gluino production at the LHC

    Get PDF
    We present predictions of the total cross sections for pair production of squarks and gluinos at the LHC, including the stop-antistop production process. Our calculation supplements full fixed-order NLO predictions with resummation of threshold logarithms and Coulomb singularities at next-to-leading logarithmic (NLL) accuracy, including bound-state effects. The numerical effect of higher-order Coulomb terms can be as big or larger than that of soft-gluon corrections. For a selection of benchmark points accessible with data from the 2010-2012 LHC runs, resummation leads to an enhancement of the total inclusive squark and gluino production cross section in the 15-30 % range. For individual production processes of gluinos, the corrections can be much larger. The theoretical uncertainty in the prediction of the hard-scattering cross sections is typically reduced to the 10 % level.Comment: 45 pages, 16 Figures, LaTex. v2: published version. Grids with numerical results for the NLL cross sections for squark and gluino production at the 7/8 TeV LHC are included in the submission and are also available at http://omnibus.uni-freiburg.de/~cs1010/susy.htm
    corecore