83 research outputs found

    Intramuscular EMG-driven musculoskeletal modelling: towards implanted muscle interfacing in spinal cord injury patients

    Get PDF
    OBJECTIVE: Surface EMG-driven modelling has been proposed as a means to control assistive devices by estimating joint torques. Implanted EMG sensors have several advantages over wearable sensors but provide a more localized information on muscle activity, which may impact torque estimates. Here, we tested and compared the use of surface and intramuscular EMG measurements for the estimation of required assistive joint torques using EMG driven modelling. METHODS: Four healthy subjects and three incomplete spinal cord injury (SCI) patients performed walking trials at varying speeds. Motion capture marker trajectories, surface and intramuscular EMG, and ground reaction forces were measured concurrently. Subject-specific musculoskeletal models were developed for all subjects, and inverse dynamics analysis was performed for all individual trials. EMG-driven modelling based joint torque estimates were obtained from surface and intramuscular EMG. RESULTS: The correlation between the experimental and predicted joint torques was similar when using intramuscular or surface EMG as input to the EMG-driven modelling estimator in both healthy individuals and patients. CONCLUSION: We have provided the first comparison of non-invasive and implanted EMG sensors as input signals for torque estimates in healthy individuals and SCI patients. SIGNIFICANCE: Implanted EMG sensors have the potential to be used as a reliable input for assistive exoskeleton joint torque actuation

    CD4-Transgenic Zebrafish Reveal Tissue-Resident Th2- and Regulatory T Cell-like Populations and Diverse Mononuclear Phagocytes.

    Get PDF
    CD4+ T cells are at the nexus of the innate and adaptive arms of the immune system. However, little is known about the evolutionary history of CD4+ T cells, and it is unclear whether their differentiation into specialized subsets is conserved in early vertebrates. In this study, we have created transgenic zebrafish with vibrantly labeled CD4+ cells allowing us to scrutinize the development and specialization of teleost CD4+ leukocytes in vivo. We provide further evidence that CD4+ macrophages have an ancient origin and had already emerged in bony fish. We demonstrate the utility of this zebrafish resource for interrogating the complex behavior of immune cells at cellular resolution by the imaging of intimate contacts between teleost CD4+ T cells and mononuclear phagocytes. Most importantly, we reveal the conserved subspecialization of teleost CD4+ T cells in vivo. We demonstrate that the ancient and specialized tissues of the gills contain a resident population of il-4/13b-expressing Th2-like cells, which do not coexpress il-4/13a Additionally, we identify a contrasting population of regulatory T cell-like cells resident in the zebrafish gut mucosa, in marked similarity to that found in the intestine of mammals. Finally, we show that, as in mammals, zebrafish CD4+ T cells will infiltrate melanoma tumors and obtain a phenotype consistent with a type 2 immune microenvironment. We anticipate that this unique resource will prove invaluable for future investigation of T cell function in biomedical research, the development of vaccination and health management in aquaculture, and for further research into the evolution of adaptive immunity.European Research Council (Grant IDs: ERC-2011-StG-282059 (PROMINENT), 677501 (ZF_Blood)), Biotechnology and Biological Sciences Research Council (Grant ID: BB/L007401/1), Dowager Countess Eleanor Peel Trust (Grant ID: TH-PRCL.FID2228), Medical Research Council, Department for International Development (Career Development Award Fellowship MR/J009156/1), Medical Research Foundation (Grant ID: R/140419), Cancer Research UK (Grant ID: C45041/A14953), Wellcome Trust and Medical Research Council to the Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute (core support grant)This is the final version of the article. It first appeared from The American Association of Immunologists via https://doi.org/10.4049/​jimmunol.160095

    Intramuscular EMG-Driven Musculoskeletal Modelling: Towards Implanted Muscle Interfacing in Spinal Cord Injury Patients

    Get PDF
    Objective: Surface EMG-driven modelling has been proposed as a means to control assistive devices by estimating joint torques. Implanted EMG sensors have several advantages over wearable sensors but provide a more localized information on muscle activity, which may impact torque estimates. Here, we tested and compared the use of surface and intramuscular EMG measurements for the estimation of required assistive joint torques using EMG driven modelling. Methods: Four healthy subjects and three incomplete spinal cord injury (SCI) patients performed walking trials at varying speeds. Motion capture marker trajectories, surface and intramuscular EMG, and ground reaction forces were measured concurrently. Subject-specific musculoskeletal models were developed for all subjects, and inverse dynamics analysis was performed for all individual trials. EMG-driven modelling based joint torque estimates were obtained from surface and intramuscular EMG. Results: The correlation between the experimental and predicted joint torques was similar when using intramuscular or surface EMG as input to the EMG-driven modelling estimator in both healthy individuals and patients. Conclusion: We have provided the first comparison of non-invasive and implanted EMG sensors as input signals for torque estimates in healthy individuals and SCI patients. Significance: Implanted EMG sensors have the potential to be used as a reliable input for assistive exoskeleton joint torque actuation.The authors would like to thank Enrique Pérez Rizo, Natalia Comino Suárez and María Isabel Sinovas Alonso for their assistance on the experimental and data acquisition procedure

    A data-globe and immersive virtual reality environment for upper limb rehabilitation after spinal cord injury

    Full text link
    While a number of virtual data-gloves have been used in stroke, there is little evidence about their use in spinal cord injury (SCI). A pilot clinical experience with nine SCI subjects was performed comparing two groups: one carried out a virtual rehabilitation training based on the use of a data glove, CyberTouch combined with traditional rehabilitation, during 30 minutes a day twice a week along two weeks; while the other made only conventional rehabilitation. Furthermore, two functional indexes were developed in order to assess the patient’s performance of the sessions: normalized trajectory lengths and repeatability. While differences between groups were not statistically significant, the data-glove group seemed to obtain better results in the muscle balance and functional parameters, and in the dexterity, coordination and fine grip tests. Related to the indexes that we implemented, normalized trajectory lengths and repeatability, every patient showed an improvement in at least one of the indexes, either along Y-axis trajectory or Z-axis trajectory. This study might be a step in investigating new ways of treatments and objective measures in order to obtain more accurate data about the patient’s evolution, allowing the clinicians to develop rehabilitation treatments, adapted to the abilities and needs of the patients

    Adaptation Strategies for Personalized Gait Neuroprosthetics

    Get PDF
    Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal. Therefore, this paper presents an overview of challenges and research directions regarding an interface with the peripheral nervous system, an interface with the central nervous system, and the requirements of interface computing architectures. The interface should be modular and adaptable, such that it can provide assistance where it is needed. Novel data processing technology should be developed to allow for real-time processing while accounting for signal variations in the human. Personalized biomechanical models and simulation techniques should be developed to predict assisted walking motions and interactions between the user and the device. Furthermore, the advantages of interfacing with both the brain and the spinal cord or the periphery should be further explored. Technological advances of interface computing architecture should focus on learning on the chip to achieve further personalization. Furthermore, energy consumption should be low to allow for longer use of the neuroprosthesis. In-memory processing combined with resistive random access memory is a promising technology for both. This paper discusses the aforementioned aspects to highlight new directions for future research in gait neuroprosthetics.AK is funded by a faculty endowment by adidas AG. MA, SKH, NM, MN, RJQ, R-DR, RJT are supported by NSF CPS grant 1739800, VA Merit Reviews A2275-R and 3056, and the NIH (5T32EB004314-15, R01 NS040547-13). MS and AG are funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 803035). AJd-A, JMF-L, and JCM are supported by coordinated grants RTI2018-097290-B-C31/C32/C33 (TAILOR project) funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. MR is funded by the Lo3-ML project by the Federal Ministry for Education, Science and Technology (BMBF) (Funding No. 16ES1142K). AC, SS, and MV were supported by the European Research Council (ERC) under the project NGBMI (759370), the Einstein Stiftung Berlin, the ERA-NET NEURON project HYBRIDMIND (BMBF, 01GP2121A and -B) and the BMBF project NEO (13GW0483C)

    Gene Expression Profiles of Chicken Embryo Fibroblasts in Response to Salmonella Enteritidis Infection

    Get PDF
    The response of chicken to non-typhoidal Salmonella infection is becoming well characterised but the role of particular cell types in this response is still far from being understood. Therefore, in this study we characterised the response of chicken embryo fibroblasts (CEFs) to infection with two different S. Enteritidis strains by microarray analysis. The expression of chicken genes identified as significantly up- or down-regulated (≥3-fold) by microarray analysis was verified by real-time PCR followed by functional classification of the genes and prediction of interactions between the proteins using Gene Ontology and STRING Database. Finally the expression of the newly identified genes was tested in HD11 macrophages and in vivo in chickens. Altogether 19 genes were induced in CEFs after S. Enteritidis infection. Twelve of them were also induced in HD11 macrophages and thirteen in the caecum of orally infected chickens. The majority of these genes were assigned different functions in the immune response, however five of them (LOC101750351, K123, BU460569, MOBKL2C and G0S2) have not been associated with the response of chicken to Salmonella infection so far. K123 and G0S2 were the only 'non-immune' genes inducible by S. Enteritidis in fibroblasts, HD11 macrophages and in the caecum after oral infection. The function of K123 is unknown but G0S2 is involved in lipid metabolism and in β-oxidation of fatty acids in mitochondria

    The IceCube Realtime Alert System

    Get PDF
    Following the detection of high-energy astrophysical neutrinos in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts to the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole detector site and at IceCube facilities in the north that have enabled this fast follow-up program to be developed. Additionally, this paper presents the first realtime analyses to be activated within this framework, highlights their sensitivities to astrophysical neutrinos and background event rates, and presents an outlook for future discoveries.Comment: 33 pages, 9 figures, Published in Astroparticle Physic

    Gait kinematic analysis in patients with a mild form of central cord syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Central cord syndrome (CCS) is considered the most common incomplete spinal cord injury (SCI). Independent ambulation was achieved in 87-97% in young patients with CCS but no gait analysis studies have been reported before in such pathology. The aim of this study was to analyze the gait characteristics of subjects with CCS and to compare the findings with a healthy age, sex and anthropomorphically matched control group (CG), walking both at a self-selected speed and at the same speed.</p> <p>Methods</p> <p>Twelve CCS patients and a CG of twenty subjects were analyzed. Kinematic data were obtained using a three-dimensional motion analysis system with two scanner units. The CG were asked to walk at two different speeds, at a self-selected speed and at a slower one, similar to the mean gait speed previously registered in the CCS patient group. Temporal, spatial variables and kinematic variables (maximum and minimum lower limb joint angles throughout the gait cycle in each plane, along with the gait cycle instants of occurrence and the joint range of motion - ROM) were compared between the two groups walking at similar speeds.</p> <p>Results</p> <p>The kinematic parameters were compared when both groups walked at a similar speed, given that there was a significant difference in the self-selected speeds (p < 0.05). Hip abduction and knee flexion at initial contact, as well as minimal knee flexion at stance, were larger in the CCS group (p < 0.05). However, the range of knee and ankle motion in the sagittal plane was greater in the CG group (p < 0.05). The maximal ankle plantar-flexion values in stance phase and at toe off were larger in the CG (p < 0.05).</p> <p>Conclusions</p> <p>The gait pattern of CCS patients showed a decrease of knee and ankle sagittal ROM during level walking and an increase in hip abduction to increase base of support. The findings of this study help to improve the understanding how CCS affects gait changes in the lower limbs.</p

    Dengue Virus Inhibits Immune Responses in Aedes aegypti Cells

    Get PDF
    The ability of many viruses to manipulate the host antiviral immune response often results in complex host-pathogen interactions. In order to study the interaction of dengue virus (DENV) with the Aedes aegypti immune response, we have characterized the DENV infection-responsive transcriptome of the immune-competent A. aegypti cell line Aag2. As in mosquitoes, DENV infection transcriptionally activated the cell line Toll pathway and a variety of cellular physiological systems. Most notably, however, DENV infection down-regulated the expression levels of numerous immune signaling molecules and antimicrobial peptides (AMPs). Functional assays showed that transcriptional induction of AMPs from the Toll and IMD pathways in response to bacterial challenge is impaired in DENV-infected cells. In addition, Escherichia coli, a Gram-negative bacteria species, grew better when co-cultured with DENV-infected cells than with uninfected cells, suggesting a decreased production of AMPs from the IMD pathway in virus-infected cells. Pre-stimulation of the cell line with Gram-positive bacteria prior to DENV infection had no effect on DENV titers, while pre-stimulation with Gram-negative bacteria resulted in an increase in DENV titers. These results indicate that DENV is capable of actively suppressing immune responses in the cells it infects, a phenomenon that may have important consequences for virus transmission and insect physiology
    corecore