54 research outputs found

    Adjuvant-free immunization with infective filarial larvae as lymphatic homing antigen carriers

    Get PDF
    International audienceControlled infection with intestinal nematodes has therapeutic potential for preventing the symptoms of allergic and autoimmune diseases. Here, we engineered larvae of the filarial nematode Litomosoides sigmodontis as a vaccine strategy to induce adaptive immunity against a foreign, crosslinked protein, chicken egg ovalbumin (OVA), in the absence of an external adjuvant. The acylation of filarial proteins with fluorescent probes or biotin was not immediately detrimental to larval movement and survival, which died 3 to 5 days later. At least some of the labeled and skin-inoculated filariae migrated through lymphatic vessels to draining lymph nodes. The immunization potential of OVA-biotin-filariae was compared to that of an OVA-bound nanoparticulate carrier co-delivered with a CpG adjuvant in a typical vaccination scheme. Production of IFNγ and TNFα by restimulated CD4+ cells but not CD8+ confirmed the specific ability of filariae to stimulate CD4+ T cells. This alternative method of immunization exploits the intrinsic adjuvancy of the attenuated nematode carrier and has the potential to shift the vaccination immune response towards cellular immunity

    Peripherally Administered Nanoparticles Target Monocytic Myeloid Cells, Secondary Lymphoid Organs and Tumors in Mice

    Get PDF
    Nanoparticles have been extensively developed for therapeutic and diagnostic applications. While the focus of nanoparticle trafficking in vivo has traditionally been on drug delivery and organ-level biodistribution and clearance, recent work in cancer biology and infectious disease suggests that targeting different cells within a given organ can substantially affect the quality of the immunological response. Here, we examine the cell-level biodistribution kinetics after administering ultrasmall Pluronic-stabilized poly(propylene sulfide) nanoparticles in the mouse. These nanoparticles depend on lymphatic drainage to reach the lymph nodes and blood, and then enter the spleen rather than the liver, where they interact with monocytes, macrophages and myeloid dendritic cells. They were more readily taken up into lymphatics after intradermal (i.d.) compared to intramuscular administration, leading to similar to 50% increased bioavailability in blood. When administered i.d., their distribution favored antigen-presenting cells, with especially strong targeting to myeloid cells. In tumor-bearing mice, the monocytic and the polymorphonuclear myeloid-derived suppressor cell compartments were efficiently and preferentially targeted, rendering this nanoparticulate formulation potentially useful for reversing the highly suppressive activity of these cells in the tumor stroma

    Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    Get PDF
    BACKGROUND: Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. METHODS AND PRINCIPAL FINDINGS: RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. CONCLUSIONS: Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    The TLR4 Agonist Fibronectin Extra Domain A is Cryptic, Exposed by Elastase-2; use in a fibrin matrix cancer vaccine

    No full text
    Fibronectin (FN) is an extracellular matrix (ECM) protein including numerous fibronectin type III (FNIII) repeats with different functions. The alternatively spliced FN variant containing the extra domain A (FNIII EDA), located between FNIII 11 and FNIII 12, is expressed in sites of injury, chronic inflammation, and solid tumors. Although its function is not well understood, FNIII EDA is known to agonize Toll-like receptor 4 (TLR4). Here, by producing various FN fragments containing FNIII EDA, we found that FNIII EDA's immunological activity depends upon its local intramolecular context within the FN chain. N-terminal extension of the isolated FNIII EDA with its neighboring FNIII repeats (FNIII 9-10-11) enhanced its activity in agonizing TLR4, while C-terminal extension with the native FNIII 12-13-14 heparin-binding domain abrogated it. In addition, we reveal that an elastase 2 cleavage site is present between FNIII EDA and FNIII 12. Activity of the C-terminally extended FNIII EDA could be restored after cleavage of the FNIII 12-13-14 domain by elastase 2. FN being naturally bound to the ECM, we immobilized FNIII EDA-containing FN fragments within a fibrin matrix model along with antigenic peptides. Such matrices were shown to stimulate cytotoxic CD8(+) T cell responses in two murine cancer models

    Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes.

    No full text
    The sentinel or tumor-draining lymph node (tdLN) serves as a metastatic niche for many solid tumors and is altered via tumor-derived factors that support tumor progression and metastasis. tdLNs are often removed surgically, and therapeutic vaccines against tumor antigens are typically administered systemically or in non-tumor-associated sites. Although the tdLN is immune-suppressed, it is also antigen experienced through drainage of tumor-associated antigens (TAA), so we asked whether therapeutic vaccines targeting the tdLN would be more or less effective than those targeting the non-tdLN. Using LN-targeting nanoparticle (NP)-conjugate vaccines consisting of TAA-NP and CpG-NP, we compared delivery to the tdLN versus non-tdLN in two different cancer models, E.G7-OVA lymphoma (expressing the nonendogenous TAA ovalbumin) and B16-F10 melanoma. Surprisingly, despite the immune-suppressed state of the tdLN, tdLN-targeting vaccination induced substantially stronger cytotoxic CD8+ T-cell responses, both locally and systemically, than non-tdLN-targeting vaccination, leading to enhanced tumor regression and host survival. This improved tumor regression correlated with a shift in the tumor-infiltrating leukocyte repertoire toward a less suppressive and more immunogenic balance. Nanoparticle coupling of adjuvant and antigen was required for effective tdLN targeting, as nanoparticle coupling dramatically increased the delivery of antigen and adjuvant to LN-resident antigen-presenting cells, thereby increasing therapeutic efficacy. This work highlights the tdLN as a target for cancer immunotherapy and shows how its antigen-experienced but immune-suppressed state can be reprogrammed with a targeted vaccine yielding antitumor immunity

    Nanoparticle conjugation enhances the immunomodulatory effects of intranasally delivered CpG in house dust mite-allergic mice.

    Get PDF
    An emerging strategy in preventing and treating airway allergy consists of modulating the immune response induced against allergens in the lungs. CpG oligodeoxynucleotides have been investigated in airway allergy studies, but even if promising, efficacy requires further substantiation. We investigated the effect of pulmonary delivery of nanoparticle (NP)-conjugated CpG on lung immunity and found that NP-CpG led to enhanced recruitment of activated dendritic cells and to Th1 immunity compared to free CpG. We then evaluated if pulmonary delivery of NP-CpG could prevent and treat house dust mite-induced allergy by modulating immunity directly in lungs. When CpG was administered as immunomodulatory therapy prior to allergen sensitization, we found that NP-CpG significantly reduced eosinophilia, IgE levels, mucus production and Th2 cytokines, while free CpG had only a moderate effect on these parameters. In a therapeutic setting where CpG was administered after allergen sensitization, we found that although both free CpG and NP-CpG reduced eosinophilia and IgE levels to the same extent, NP conjugation of CpG significantly enhanced reduction of Th2 cytokines in lungs of allergic mice. Taken together, these data highlight benefits of NP conjugation and the relevance of NP-CpG as allergen-free therapy to modulate lung immunity and treat airway allergy
    corecore