627 research outputs found

    Optical excitations of a self assembled artificial ion

    Full text link
    By use of magneto-photoluminescence spectroscopy we demonstrate bias controlled single-electron charging of a single quantum dot. Neutral, single, and double charged excitons are identified in the optical spectra. At high magnetic fields one Zeeman component of the single charged exciton is found to be quenched, which is attributed to the competing effects of tunneling and spin-flip processes. Our experimental data are in good agreement with theoretical model calculations for situations where the spatial extent of the hole wave functions is smaller as compared to the electron wave functions.Comment: to be published in Physical Review B (rapid communication

    Optical properties of arrays of quantum dots with internal disorder

    Full text link
    Optical properties of large arrays of isolated quantum dots are discussed in order to interpret the existent photoluminescence data. The presented theory explains the large observed shift between the lowest emission and absorption energies as the average distance between the ground and first excited states of the dots. The lineshape of the spectra is calculated for the case when the fluctuations of the energy levels in quantum dots are due to the alloy composition fluctuations. The calculated lineshape is in good agreement with the experimental data. The influence of fluctuations of the shape of quantum dots on the photoluminescence spectra is also discussed.Comment: 7 pages (twocolumn) LATEX, 6 Postscript figure

    Quantum orientational melting of mesoscopic clusters

    Full text link
    By path integral Monte Carlo simulations we study the phase diagram of two - dimensional mesoscopic clusters formed by electrons in a semiconductor quantum dot or by indirect magnetoexcitons in double quantum dots. At zero (or sufficiently small) temperature, as quantum fluctuations of particles increase, two types of quantum disordering phenomena take place: first, at small values of quantum de Boer parameter q < 0.01 one can observe a transition from a completely ordered state to that in which different shells of the cluster, being internally ordered, are orientationally disordered relative to each other. At much greater strengths of quantum fluctuations, at q=0.1, the transition to a disordered (superfluid for the boson system) state takes place.Comment: 4 pages, 6 Postscript figure

    Sn delta-doping in GaAs

    Full text link
    We have prepared a number of GaAs structures delta-doped by Sn using the well-known molecular beam epitaxy growth technique. The samples obtained for a wide range of Sn doping densities were characterised by magnetotransport experiments at low temperatures and in high magnetic fields up to 38 T. Hall-effect and Shubnikov-de Haas measurements show that the electron densities reached are higher than for other delta-dopants, like Si and Be. The maximum carrier density determined by the Hall effect equals 8.4x10^13 cm^-2. For all samples several Shubnikov-de Haas frequencies were observed, indicating the population of multiple subbands. The depopulation fields of the subbands were determined by measuring the magnetoresistance with the magnetic field in the plane of the delta-layer. The experimental results are in good agreement with selfconsistent bandstructure calculations. These calculation shows that in the sample with the highest electron density also the conduction band at the L point is populated.Comment: 11 pages text (ps), 9 figures (ps), submitted to Semicon. Science Tech

    {\it In-situ} Laser Microprocessing at the Quantum Level

    Full text link
    One of the biggest challenges of nanotechnology is the fabrication of nano-objects with perfectly controlled properties. Here we employ a focused laser beam both to characterize and to {\it in-situ} modify single semiconductor structures by heating them from cryogenic to high temperatures. The heat treatment allows us to blue-shift, in a broad range and with resolution-limited accuracy, the quantized energy levels of light and charge carriers confined in optical microcavities and self-assembled quantum dots (QDs). We demonstrate the approach by tuning an optical mode into resonance with the emission of a single QD and by bringing different QDs in mutual resonance. This processing method may open the way to a full control of nanostructures at the quantum level.Comment: 3 figure

    Recent advances in exciton based quantum information processing in quantum dot nanostructures

    Get PDF
    Recent experimental developments in the field of semiconductor quantum dot spectroscopy will be discussed. First we report about single quantum dot exciton two-level systems and their coherent properties in terms of single qubit manipulations. In the second part we report on coherent quantum coupling in a prototype "two-qubit" system consisting of a vertically stacked pair of quantum dots. The interaction can be tuned in such quantum dot molecule devices using an applied voltage as external parameter.Comment: 37 pages, 15 figures, submitted to New Journal of Physics, focus issue on Solid State Quantum Information, added reference

    Multiband theory of multi-exciton complexes in self-assembled quantum dots

    Full text link
    We report on a multiband microscopic theory of many-exciton complexes in self-assembled quantum dots. The single particle states are obtained by three methods: single-band effective-mass approximation, the multiband kâ‹…pk\cdot p method, and the tight-binding method. The electronic structure calculations are coupled with strain calculations via Bir-Pikus Hamiltonian. The many-body wave functions of NN electrons and NN valence holes are expanded in the basis of Slater determinants. The Coulomb matrix elements are evaluated using statically screened interaction for the three different sets of single particle states and the correlated NN-exciton states are obtained by the configuration interaction method. The theory is applied to the excitonic recombination spectrum in InAs/GaAs self-assembled quantum dots. The results of the single-band effective-mass approximation are successfully compared with those obtained by using the of kâ‹…pk\cdot p and tight-binding methods.Comment: 10 pages, 8 figure

    Local Optical Spectroscopy in Quantum Confined Systems: A Theoretical Description

    Get PDF
    A theoretical description of local absorption is proposed in order to investigate spectral variations on a length scale comparable with the extension of the relevant quantum states. A general formulation is derived within the density-matrix formalism including Coulomb correlation, and applied to the prototypical case of coupled quantum wires. The results show that excitonic effects may have a crucial impact on the local absorption with implications for the spatial resolution and the interpretation of near-field optical spectra.Comment: To appear in Phys. Rev. Lett. - 11 pages, 3 PostScript figures (1 figure in colors) embedded. Uses RevTex, and psfig style

    Few-Particle Effects in Semiconductor Quantum Dots: Observation of Multi-Charged-Excitons

    Full text link
    We investigate experimentally and theoretically few-particle effects in the optical spectra of single quantum dots (QDs). Photo-depletion of the QD together with the slow hopping transport of impurity-bound electrons back to the QD are employed to efficiently control the number of electrons present in the QD. By investigating structurally identical QDs, we show that the spectral evolutions observed can be attributed to intrinsic, multi-particle-related effects, as opposed to extrinsic QD-impurity environment-related interactions. From our theoretical calculations we identify the distinct transitions related to excitons and excitons charged with up to five additional electrons, as well as neutral and charged biexcitons.Comment: 4 pages, 4 figures, revtex. Accepted for publication in Physical Review Letter

    Massive creation of entangled exciton states in semiconductor quantum dots

    Full text link
    An intense laser pulse propagating in a medium of inhomogeneously broadened quantum dots massively creates entangled exciton states. After passage of the pulse all single-exciton states remain unpopulated (self-induced transparency) whereas biexciton coherence (exciton entanglement) is generated through two-photon transitions. We propose several experimental techniques for the observation of such unexpected behavior
    • …
    corecore