126 research outputs found

    Non-variable cosmologically distant gamma-ray emitters as an imprint of propagation of ultra-high-energy protons

    Full text link
    The acceleration cites of ultra-high-energy (UHE) protons can be traced by the footprint left by these particles propagating through cosmic microwave background (CMB) radiation. Secondary electrons produced in extended region of several tens of Mpc emit their energy via synchrotron radiation predominantly in the initial direction of the parent protons. It forms a non-variable and compact (almost point-like) source of high energy gamma rays. The importance of this effect is increased for cosmologically distant objects; because of severe energy losses, UHE protons cannot achieve us even in the case of extremely weak intergalactic magnetic fields. Moreover, at high redshifts the energy conversion from protons to secondary particles becomes significantly more effective due to the denser and more energetic CMB in the past. This increases the chances of UHE cosmic rays to be traced by the secondary synchrotron gamma radiation. We discuss the energy budget and the redshift dependence of the efficiency of energy transfer from UHE protons to synchrotron radiation. The angular and spectral distributions of radiation in the gamma- and X-ray energy bands are calculated and discussed in the context of their detectability by Fermi LAT and Chandra observatories

    Quantum geometrodynamics for black holes and wormholes

    Full text link
    The geometrodynamics of the spherical gravity with a selfgravitating thin dust shell as a source is constructed. The shell Hamiltonian constraint is derived and the corresponding Schroedinger equation is obtained. This equation appeared to be a finite differences equation. Its solutions are required to be analytic functions on the relevant Riemannian surface. The method of finding discrete spectra is suggested based on the analytic properties of the solutions. The large black hole approximation is considered and the discrete spectra for bound states of quantum black holes and wormholes are found. They depend on two quantum numbers and are, in fact, quasicontinuous.Comment: Latex, 32 pages, 5 fig

    Quasiclassical mass spectrum of the black hole model with selfgravitating dust shell

    Full text link
    We consider a quantum mechanical black hole model introduced in {\it Phys.Rev.}, {\bf D57}, 1118 (1998) that consists of the selfgravitating dust shell. The Schroedinger equation for this model is a finite difference equation with the shift of the argument along the imaginary axis. Solving this equation in quasiclassical limit in complex domain leads to quantization conditions that define discrete quasiclassical mass spectrum. One of the quantization conditions is Bohr-Sommerfeld condition for the bound motion of the shell. The other comes from the requirement that the wave function is unambiguously defined on the Riemannian surface on which the coefficients of Schroedinger equation are regular. The second quantization condition remains valid for the unbound motion of the shell as well, and in the case of a collapsing null-dust shell leads to m∼km\sim\sqrt{k} spectrum.Comment: 35 pages, 8 figures, to appear in Phys. Rev.

    Which blazars are neutrino loud?

    Get PDF
    Protons accelerated in the cores of active galactic nuclei can effectively produce neutrinos only if the soft radiation background in the core is sufficiently high. We find restrictions on the spectral properties and luminosity of blazars under which they can be strong neutrino sources. We analyze the possibility that neutrino flux is highly beamed along the rotation axis of the central black hole. The enhancement of neutrino flux compared to GeV gamma-ray flux from a given source makes the detection of neutrino point sources more probable. At the same time the smaller open angle reduces the number of possible neutrino-loud blazars compared to the number of gamma-ray loud ones. We present the table of 15 blazars which are the most likely candidates for the detection by future neutrino telescopes.Comment: 9 pages, 5 figures, version to be published in PR
    • …
    corecore