72 research outputs found
Thermodynamical Study on the Heavy-Fermion Superconductor PrOs4Sb12: Evidence for Field-Induced Phase Transition
We report measurements of low-temperature specific heat on the 4f^2-based
heavy-fermion superconductor PrOs4Sb12. In magnetic fields above 4.5 T in the
normal state, distinct anomalies are found which demonstrate the existence of a
field-induced ordered phase (FIOP). The Pr nuclear specific heat indicates an
enhancement of the 4f magnetic moment in the FIOP. Utilizing a Maxwell
relation, we conclude that anomalous entropy, which is expected for a
single-site quadrupole Kondo model, is not concealed below 0.16 K in zero
field. We also discuss two possible interpretations of the Schottky-like
anomaly at ~3 K, i.e., a crystalline-field excitation or a hybridization gap
formation.Comment: 5 pages with 5 figures, a note with two references added in proo
Quadrupolar Kondo Effect in Non-Kramers Doublet System PrInAg2
We performed ultrasonic measurement on the rare-earth intermetallic compound
PrInAg_2 to examine the quadrupolar Kondo effect associated with the
non-Kramers Gamma_3 doublet ground state. The characteristic softening of the
elastic constant (c_{11}-c_{12})/2 below 10 K in PrInAg_2 is attributed to a
Curie term in quadrupolar susceptibility for the quadrupole O_2^2=J_x^2-J_y^2
of the stable Gamma_3 ground state. (c_{11}-c_{12})/2 turns to a slight
increase with the -lnT dependence below 0.1 K, which suggests the quenching of
the quadrupolar moment in the quadrupolar Kondo state. Under applied magnetic
fields of 10 T and 15 T above 8.7 T corresponding to the Kondo temperature T_K
of ~ 0.86 K, the behavior of (c_{11}-c_{12})/2 is described in terms of
quadrupolar susceptibility for the stable 4f^2 state.Comment: PDF, 10pages + 5figures, Strongly Correlated Electron
Kondo Effects and Multipolar Order in the cubic PrTr2Al20 (Tr=Ti, V)
Our single crystal study reveals that PrTr2Al20 (Tr = Ti and V) provides the
first examples of a cubic {\Gamma}3 nonmagnetic ground doublet system that
shows the Kondo effect including a -ln T dependent resistivity. The {\Gamma}3
quadrupolar moments in PrV2Al20 induce anomalous metallic behavior through
hybridization with conduction electrons, such as T^{1/2} dependent resistivity
and susceptibility below ~ 20 K down to its ordering temperature T_O = 0.6 K.
In PrTi2Al20, however, quadrupoles are well-localized and exhibit an order at
T_O = 2.0 K. Stronger Kondo coupling in PrV2Al20 than in PrTi2Al20 suppresses
quadrupolar ordering, and instead promotes hybridization between the {\Gamma}3
doublet and conduction electrons, leading to most likely the quadrupolar Kondo
effect.Comment: 12 pages, 4 figure
Non-Fermi Liquid Behavior in Dilute Quadrupolar System PrLaPb with 0.05
We have studied the low-temperature properties of PrLaPb
with non-Kramers quadrupolar moments of the crystal-electric-field
ground state, for a wide concentration range of Pr ions. For 0.05, the
specific heat increases monotonically below =1.5 K, which can be
scaled with a characteristic temperature defined at each concentration
. The electrical resistivity in the corresponding temperature
region shows a marked decrease deviating from a Fermi-liquid behavior
. The Kondo effect arising from the correlation
between the dilute moments and the conduction electrons may give
rise to such anomalous behavior
Open-Retrieval Conversational Question Answering
Conversational search is one of the ultimate goals of information retrieval.
Recent research approaches conversational search by simplified settings of
response ranking and conversational question answering, where an answer is
either selected from a given candidate set or extracted from a given passage.
These simplifications neglect the fundamental role of retrieval in
conversational search. To address this limitation, we introduce an
open-retrieval conversational question answering (ORConvQA) setting, where we
learn to retrieve evidence from a large collection before extracting answers,
as a further step towards building functional conversational search systems. We
create a dataset, OR-QuAC, to facilitate research on ORConvQA. We build an
end-to-end system for ORConvQA, featuring a retriever, a reranker, and a reader
that are all based on Transformers. Our extensive experiments on OR-QuAC
demonstrate that a learnable retriever is crucial for ORConvQA. We further show
that our system can make a substantial improvement when we enable history
modeling in all system components. Moreover, we show that the reranker
component contributes to the model performance by providing a regularization
effect. Finally, further in-depth analyses are performed to provide new
insights into ORConvQA.Comment: Accepted to SIGIR'2
Superconductivity and the high field ordered phase in the heavy fermion compound PrOsSb
Superconductivity is observed in the filled skutterudite compound \PrOsSb{}
below a critical temperature temperature K and appears to
develop out of a nonmagnetic heavy Fermi liquid with an effective mass , where is the free electron mass.
Features associated with a cubic crystalline electric field are present in
magnetic susceptibility, specific heat, electrical resistivity, and inelastic
neutron scattering measurements, yielding a Pr energy level scheme
consisting of a nonmagnetic doublet ground state, a low lying
triplet excitied state at K, and much higher temperature
triplet and singlet excited states. Measurements also
indicate that the superconducting state is unconventional and consists of two
distinct superconducting phases. At high fields and low temperatures, an
ordered phase of magnetic or quadrupolar origin is observed, suggesting that
the superconductivity may occur in the vicinity of a magnetic or quadrupolar
quantum critical point.Comment: 11 pages, 4 figures, presented at the 3rd international symposium on
Advance Science Research (ASR 2002), JAERI Tokai, Ibaraki, Japa
Superconductivity in the Ferroquadrupolar State in the Quadrupolar Kondo Lattice PrTiAl
The cubic compound PrTiAl is a quadrupolar Kondo lattice system
that exhibits quadrupolar ordering due to the non-Kramers ground
doublet and has strong hybridization between and conduction electrons. Our
study using high-purity single crystal reveals that PrTiAl exhibits
type-II superconductivity at mK in the nonmagnetic
ferroquadrupolar state. The superconducting critical temperature and field
phase diagram suggests moderately enhanced effective mass of
Very Low Temperature Tunnelling Spectroscopy in the heavy fermion superconductor PrOsSb
We present scanning tunnelling spectroscopy measurements on the heavy fermion
superconductor PrOsSb. Our results show that the superconducting gap
opens over a large part of the Fermi surface. The deviations from isotropic BCS
s-wave behavior are discussed in terms of a finite distribution of values of
the superconducting gap.Comment: 4 pages, 4 figure
Unusual behaviors in the transport properties of REFeP (RE: La, Ce, Pr, and Nd)
We have investigated the resistivity (), thermoelectric power (TEP) and
Hall coefficient () on high quality single crystals of
REFeP. TEP in CeFeP is extremely large (
0.5mV/K at 290K) with a peak of 0.75mV/K at around 65K. The Hall
mobility also shows a peak at 65K, suggesting carriers with heavy masses
developed at lower temperatures related with the f-hybridized band. Both Pr-
and Nd- systems exhibit an apparent increase of with decreasing
temperature far above their magnetic transition temperatures. In the same
temperature ranges, TEP exhibits unusually large absolute values of -50V/K
for PrFeP and -15V/K for NdFeP, respectively.
For PrFeP, such anomalous transport properties suggest an unusual
ground state, possibly related with the Quadrupolar Kondo effect.Comment: 5 pages, 8 figure
Exotic Heavy Fermion State in the Filled Skutterudite PrFeP Uncovered by the de Haas-van Alphen Effect
We report the de Haas-van Alphen (dHvA) experiment on the filled skutterudite
PrFeP exhibiting apparent Kondo-like behaviors in the transport and
thermal properties. We have found enormously enhanced cyclotron effective mass
in the high field phase (HFP), which
indicates that PrFeP is the first Pr-compound in which really heavy
mass has been unambiguously confirmed. Also in the low field non-magnetic
ordered phase (LOP), we observed the dHvA branch with that is quite heavy taking into account its small Fermi surface volume
(0.15% of the Brillouin zone size). The insensitivity of mass in LOP against
the magnetic field suggests that the quadrupolar interaction plays a main role
both in the mass renormalization and the LOP formation.Comment: 5 pages, 5 figures, Phys. Rev. B (01 October 2002) in pres
- …