50 research outputs found
Succinctness of two-way probabilistic and quantum finite automata
We prove that two-way probabilistic and quantum finite automata (2PFA's and
2QFA's) can be considerably more concise than both their one-way versions
(1PFA's and 1QFA's), and two-way nondeterministic finite automata (2NFA's). For
this purpose, we demonstrate several infinite families of regular languages
which can be recognized with some fixed probability greater than by
just tuning the transition amplitudes of a 2QFA (and, in one case, a 2PFA) with
a constant number of states, whereas the sizes of the corresponding 1PFA's,
1QFA's and 2NFA's grow without bound. We also show that 2QFA's with mixed
states can support highly efficient probability amplification. The weakest
known model of computation where quantum computers recognize more languages
with bounded error than their classical counterparts is introduced.Comment: A new version, 21 pages, late
Proving the power of postselection
It is a widely believed, though unproven, conjecture that the capability of
postselection increases the language recognition power of both probabilistic
and quantum polynomial-time computers. It is also unknown whether
polynomial-time quantum machines with postselection are more powerful than
their probabilistic counterparts with the same resource restrictions. We
approach these problems by imposing additional constraints on the resources to
be used by the computer, and are able to prove for the first time that
postselection does augment the computational power of both classical and
quantum computers, and that quantum does outperform probabilistic in this
context, under simultaneous time and space bounds in a certain range. We also
look at postselected versions of space-bounded classes, as well as those
corresponding to error-free and one-sided error recognition, and provide
classical characterizations. It is shown that would equal
if the randomized machines had the postselection capability.Comment: 26 pages. This is a heavily improved version of arXiv:1102.066