114 research outputs found
Efficient algorithms for tensor scaling, quantum marginals and moment polytopes
We present a polynomial time algorithm to approximately scale tensors of any
format to arbitrary prescribed marginals (whenever possible). This unifies and
generalizes a sequence of past works on matrix, operator and tensor scaling.
Our algorithm provides an efficient weak membership oracle for the associated
moment polytopes, an important family of implicitly-defined convex polytopes
with exponentially many facets and a wide range of applications. These include
the entanglement polytopes from quantum information theory (in particular, we
obtain an efficient solution to the notorious one-body quantum marginal
problem) and the Kronecker polytopes from representation theory (which capture
the asymptotic support of Kronecker coefficients). Our algorithm can be applied
to succinct descriptions of the input tensor whenever the marginals can be
efficiently computed, as in the important case of matrix product states or
tensor-train decompositions, widely used in computational physics and numerical
mathematics.
We strengthen and generalize the alternating minimization approach of
previous papers by introducing the theory of highest weight vectors from
representation theory into the numerical optimization framework. We show that
highest weight vectors are natural potential functions for scaling algorithms
and prove new bounds on their evaluations to obtain polynomial-time
convergence. Our techniques are general and we believe that they will be
instrumental to obtain efficient algorithms for moment polytopes beyond the
ones consider here, and more broadly, for other optimization problems
possessing natural symmetries
Degree and Sensitivity: Tails of Two Distributions
The sensitivity of a Boolean function f is the maximum, over all inputs x, of the number of sensitive coordinates of x (namely the number of Hamming neighbors of x with different f-value). The well-known sensitivity conjecture of Nisan (see also Nisan and Szegedy) states that every sensitivity-s Boolean function can be computed by a polynomial over the reals of degree s^{O(1)}. The best known upper bounds on degree, however, are exponential rather than polynomial in s.
Our main result is an approximate version of the conjecture: every Boolean function with sensitivity s can be eps-approximated (in l_2) by a polynomial whose degree is s * polylog(1/eps). This is the first improvement on the folklore bound of s/eps. We prove this via a new "switching lemma for low-sensitivity functions" which establishes that a random restriction of a low-sensitivity function is very likely to have low decision tree depth. This is analogous to the well-known switching lemma for AC^0 circuits.
Our proof analyzes the combinatorial structure of the graph G_f of sensitive edges of a Boolean function f. Understanding the structure of this graph is of independent interest as a means of understanding Boolean functions. We propose several new complexity measures for Boolean functions based on this graph, including tree sensitivity and component dimension, which may be viewed as relaxations of worst-case sensitivity, and we introduce some new techniques, such as proper walks and shifting, to analyze these measures. We use these notions to show that the graph of a function of full degree must be sufficiently complex, and that random restrictions of low-sensitivity functions are unlikely to lead to such complex graphs.
We postulate a robust analogue of the sensitivity conjecture: if most inputs to a Boolean function f have low sensitivity, then most of the Fourier mass of f is concentrated on small subsets. We prove a lower bound on tree sensitivity in terms of decision tree depth, and show that a polynomial strengthening of this lower bound implies the robust conjecture. We feel that studying the graph G_f is interesting in its own right, and we hope that some of the notions and techniques we introduce in this work will be of use in its further study
Pseudo-finite hard instances for a student-teacher game with a Nisan-Wigderson generator
For an NP intersect coNP function g of the Nisan-Wigderson type and a string
b outside its range we consider a two player game on a common input a to the
function. One player, a computationally limited Student, tries to find a bit of
g(a) that differs from the corresponding bit of b. He can query a
computationally unlimited Teacher for the witnesses of the values of constantly
many bits of g(a). The Student computes the queries from a and from Teacher's
answers to his previous queries. It was proved by Krajicek (2011) that if g is
based on a hard bit of a one-way permutation then no Student computed by a
polynomial size circuit can succeed on all a. In this paper we give a lower
bound on the number of inputs a any such Student must fail on. Using that we
show that there is a pseudo-finite set of hard instances on which all uniform
students must fail. The hard-core set is defined in a non-standard model of
true arithmetic and has applications in a forcing construction relevant to
proof complexity
A PCP Characterization of AM
We introduce a 2-round stochastic constraint-satisfaction problem, and show
that its approximation version is complete for (the promise version of) the
complexity class AM. This gives a `PCP characterization' of AM analogous to the
PCP Theorem for NP. Similar characterizations have been given for higher levels
of the Polynomial Hierarchy, and for PSPACE; however, we suggest that the
result for AM might be of particular significance for attempts to derandomize
this class.
To test this notion, we pose some `Randomized Optimization Hypotheses'
related to our stochastic CSPs that (in light of our result) would imply
collapse results for AM. Unfortunately, the hypotheses appear over-strong, and
we present evidence against them. In the process we show that, if some language
in NP is hard-on-average against circuits of size 2^{Omega(n)}, then there
exist hard-on-average optimization problems of a particularly elegant form.
All our proofs use a powerful form of PCPs known as Probabilistically
Checkable Proofs of Proximity, and demonstrate their versatility. We also use
known results on randomness-efficient soundness- and hardness-amplification. In
particular, we make essential use of the Impagliazzo-Wigderson generator; our
analysis relies on a recent Chernoff-type theorem for expander walks.Comment: 18 page
Reliably Detecting Connectivity using Local Graph Traits
Local distributed algorithms can only gather sufficient information to identify local graph traits, that is, properties that hold within the local neighborhood of each node. However, it is frequently the case that global graph properties (connectivity, diameter, girth, etc) have a large influence on the execution of a distributed algorithm. This paper studies local graph traits and their relationship with global graph properties. Specifically, we focus on graph k-connectivity. First we prove a negative result that shows there does not exist a local graph trait which perfectly captures graph k-connectivity. We then present three different local graph traits which can be used to reliably predict the k-connectivity of a graph with varying degrees of accuracy. As a simple application of these results, we present upper and lower bounds for a local distributed algorithm which determines if a graph is k-connected. As a more elaborate application of local graph traits, we describe, and prove the correctness of, a local distributed algorithm that preserves k-connectivity in mobile ad hoc networks while allowing nodes to move independently whenever possible
Alternating Minimization, Scaling Algorithms, and the Null-Cone Problem from Invariant Theory
Alternating minimization heuristics seek to solve a (difficult) global optimization task through iteratively solving a sequence of (much easier) local optimization tasks on different parts (or blocks) of the input parameters. While popular and widely applicable, very few examples of this heuristic are rigorously shown to converge to optimality, and even fewer to do so efficiently.
In this paper we present a general framework which is amenable to rigorous analysis, and expose its applicability. Its main feature is that the local optimization domains are each a group of invertible matrices, together naturally acting on tensors, and the optimization problem is minimizing the norm of an input tensor under this joint action. The solution of this optimization problem captures a basic problem in Invariant Theory, called the null-cone problem.
This algebraic framework turns out to encompass natural computational problems in combinatorial optimization, algebra, analysis, quantum information theory, and geometric complexity theory. It includes and extends to high dimensions the recent advances on (2-dimensional) operator scaling.
Our main result is a fully polynomial time approximation scheme for this general problem, which may be viewed as a multi-dimensional scaling algorithm. This directly leads to progress on some of the problems in the areas above, and a unified view of others. We explain how faster convergence of an algorithm for the same problem will allow resolving central open problems.
Our main techniques come from Invariant Theory, and include its rich non-commutative duality theory, and new bounds on the bitsizes of coefficients of invariant polynomials. They enrich the algorithmic toolbox of this very computational field of mathematics, and are directly related to some challenges in geometric complexity theory (GCT)
Polynomial Time Algorithms in Invariant Theory for Torus Actions
An action of a group on a vector space partitions the latter into a set of orbits. We consider three natural and useful algorithmic "isomorphism" or "classification" problems, namely, orbit equality, orbit closure intersection, and orbit closure containment. These capture and relate to a variety of problems within mathematics, physics and computer science, optimization and statistics. These orbit problems extend the more basic null cone problem, whose algorithmic complexity has seen significant progress in recent years.
In this paper, we initiate a study of these problems by focusing on the actions of commutative groups (namely, tori). We explain how this setting is motivated from questions in algebraic complexity, and is still rich enough to capture interesting combinatorial algorithmic problems. While the structural theory of commutative actions is well understood, no general efficient algorithms were known for the aforementioned problems. Our main results are polynomial time algorithms for all three problems. We also show how to efficiently find separating invariants for orbits, and how to compute systems of generating rational invariants for these actions (in contrast, for polynomial invariants the latter is known to be hard). Our techniques are based on a combination of fundamental results in invariant theory, linear programming, and algorithmic lattice theory
- …