32,054 research outputs found

    The Power of LOCCq State Transformations

    Get PDF
    Reversible state transformations under entanglement non-increasing operations give rise to entanglement measures. It is well known that asymptotic local operations and classical communication (LOCC) are required to get a simple operational measure of bipartite pure state entanglement. For bipartite mixed states and multipartite pure states it is likely that a more powerful class of operations will be needed. To this end \cite{BPRST01} have defined more powerful versions of state transformations (or reducibilities), namely LOCCq (asymptotic LOCC with a sublinear amount of quantum communication) and CLOCC (asymptotic LOCC with catalysis). In this paper we show that {\em LOCCq state transformations are only as powerful as asymptotic LOCC state transformations} for multipartite pure states. We first generalize the concept of entanglement gambling from two parties to multiple parties: any pure multipartite entangled state can be transformed to an EPR pair shared by some pair of parties and that any irreducible mm (m≥2)(m\ge 2) party pure state can be used to create any other state (pure or mixed), using only local operations and classical communication (LOCC). We then use this tool to prove the result. We mention some applications of multipartite entanglement gambling to multipartite distillability and to characterizations of multipartite minimal entanglement generating sets. Finally we discuss generalizations of this result to mixed states by defining the class of {\em cat distillable states}

    On the capacities of bipartite Hamiltonians and unitary gates

    Get PDF
    We consider interactions as bidirectional channels. We investigate the capacities for interaction Hamiltonians and nonlocal unitary gates to generate entanglement and transmit classical information. We give analytic expressions for the entanglement generating capacity and entanglement-assisted one-way classical communication capacity of interactions, and show that these quantities are additive, so that the asymptotic capacities equal the corresponding 1-shot capacities. We give general bounds on other capacities, discuss some examples, and conclude with some open questions.Comment: V3: extensively rewritten. V4: a mistaken reference to a conjecture by Kraus and Cirac [quant-ph/0011050] removed and a mistake in the order of authors in Ref. [53] correcte

    Oblivious remote state preparation

    Get PDF
    We consider remote state preparation protocols for a set of pure states whose projectors form a basis for operators acting on the input Hilbert space. If a protocol (1) uses only forward communication and entanglement, (2) deterministically prepares an exact copy of the state, and (3) does so obliviously -- without leaking further information about the state to the receiver -- then the protocol can be modified to require from the sender only a single specimen of the state. Furthermore, the original protocol and the modified protocol use the same amount of classical communication. Thus, under the three conditions stated, remote state preparation requires at least as much classical communication as teleportation, as Lo has conjectured [PRA 62 (2000) 012313], which is twice the expected classical communication cost of some existing nonoblivious protocols

    Entanglement molecules

    Get PDF
    We investigate the entanglement properties of multiparticle systems, concentrating on the case where the entanglement is robust against disposal of particles. Two qubits -belonging to a multipartite system- are entangled in this sense iff their reduced density matrix is entangled. We introduce a family of multiqubit states, for which one can choose for any pair of qubits independently whether they should be entangled or not as well as the relative strength of the entanglement, thus providing the possibility to construct all kinds of ''Entanglement molecules''. For some particular configurations, we also give the maximal amount of entanglement achievable.Comment: 4 pages, 1 figur

    Quantum State Disturbance vs. Information Gain: Uncertainty Relations for Quantum Information

    Full text link
    When an observer wants to identify a quantum state, which is known to be one of a given set of non-orthogonal states, the act of observation causes a disturbance to that state. We investigate the tradeoff between the information gain and that disturbance. This issue has important applications in quantum cryptography. The optimal detection method, for a given tolerated disturbance, is explicitly found in the case of two equiprobable non-orthogonal pure states.Comment: 20 pages, standard LaTeX, four png figures (also available from the authors: [email protected] and [email protected]

    Simple Proof of Security of the BB84 Quantum Key Distribution Protocol

    Get PDF
    We prove the security of the 1984 protocol of Bennett and Brassard (BB84) for quantum key distribution. We first give a key distribution protocol based on entanglement purification, which can be proven secure using methods from Lo and Chau's proof of security for a similar protocol. We then show that the security of this protocol implies the security of BB84. The entanglement-purification based protocol uses Calderbank-Shor-Steane (CSS) codes, and properties of these codes are used to remove the use of quantum computation from the Lo-Chau protocol.Comment: 5 pages, Latex, minor changes to improve clarity and fix typo

    Activating bound entanglement in multi-particle systems

    Get PDF
    We analyze the existence of activable bound entangled states in multi-particle systems. We first give a series of examples which illustrate some different ways in which bound entangled states can be activated by letting some of the parties to share maximally entangled states. Then, we derive necessary conditions for a state to be distillable as well as to be activable. These conditions turn out to be also sufficient for a certain family of multi-qubit states. We use these results to explicitely to construct states displaying novel properties related to bound entanglement and its activation.Comment: 8 pages, 3 figure

    \u3cem\u3eArabidopsis thaliana\u3c/em\u3e GLX2-1 Contains a Dinuclear Metal Binding Site, but Is Not a Glyoxalase 2

    Get PDF
    In an effort to probe the structure and function of a predicted mitochondrial glyoxalase 2, GLX2-1, from Arabidopsis thaliana, GLX2-1 was cloned, overexpressed, purified and characterized using metal analyses, kinetics, and UV–visible, EPR, and 1H-NMR spectroscopies. The purified enzyme was purple and contained substoichiometric amounts of iron and zinc; however, metal-binding studies reveal that GLX2-1 can bind nearly two equivalents of either iron or zinc and that the most stable analogue of GLX2-1 is the iron-containing form. UV–visible spectra of the purified enzyme suggest the presence of Fe(II) in the protein, but the Fe(II) can be oxidized over time or by the addition of metal ions to the protein. EPR spectra revealed the presence of an anti-ferromagnetically-coupled Fe(III)Fe(II) centre and the presence of a protein-bound high-spin Fe(III) centre, perhaps as part of a FeZn centre. No paramagnetically shifted peaks were observed in 1H-NMR spectra of the GLX2-1 analogues, suggesting low amounts of the paramagnetic, anti-ferromagnetically coupled centre. Steady-state kinetic studies with several thiolester substrates indicate that GLX2-1 is not a GLX2. In contrast with all of the other GLX2 proteins characterized, GLX2-1 contains an arginine in place of one of the metal-binding histidine residues at position 246. In order to evaluate further whether Arg246 binds metal, the R246L mutant was prepared. The metal binding results are very similar to those of native GLX2-1, suggesting that a different amino acid is recruited as a metal-binding ligand. These results demonstrate that Arabidopsis GLX2-1 is a novel member of the metallo-β-lactamase superfamily

    The trumping relation and the structure of the bipartite entangled states

    Get PDF
    The majorization relation has been shown to be useful in classifying which transformations of jointly held quantum states are possible using local operations and classical communication. In some cases, a direct transformation between two states is not possible, but it becomes possible in the presence of another state (known as a catalyst); this situation is described mathematically by the trumping relation, an extension of majorization. The structure of the trumping relation is not nearly as well understood as that of majorization. We give an introduction to this subject and derive some new results. Most notably, we show that the dimension of the required catalyst is in general unbounded; there is no integer kk such that it suffices to consider catalysts of dimension kk or less in determining which states can be catalyzed into a given state. We also show that almost all bipartite entangled states are potentially useful as catalysts.Comment: 7 pages, RevTe

    Factoring in a Dissipative Quantum Computer

    Full text link
    We describe an array of quantum gates implementing Shor's algorithm for prime factorization in a quantum computer. The array includes a circuit for modular exponentiation with several subcomponents (such as controlled multipliers, adders, etc) which are described in terms of elementary Toffoli gates. We present a simple analysis of the impact of losses and decoherence on the performance of this quantum factoring circuit. For that purpose, we simulate a quantum computer which is running the program to factor N = 15 while interacting with a dissipative environment. As a consequence of this interaction randomly selected qubits may spontaneously decay. Using the results of our numerical simulations we analyze the efficiency of some simple error correction techniques.Comment: plain tex, 18 pages, 8 postscript figure
    • …
    corecore