220 research outputs found

    Primary cosmic rays on the lunar surface

    Get PDF
    Results are reported for determination of the galactic cosmic ray flux during various time intervals in the 1965-1972 period, on the basis of data from the instruments of a spacecraft that made a soft landing on the lunar surface, and from the radioactivity of samples returned by the spacecraft. During minimum solar activity (the second half of 1965 and the beginning of 1966) I sub 0 (E greater than or equal to 30 percent MeV/nucleon) was determined to be 0.43 (plus or minus 10 percent). These values, within the error limits of the determinations, agree with the corresponding values of galactic cosmic ray intensities determined by stratospheric measurements. The mean flux of galactic cosmic rays over the past million years is equal to I (E greater or equal to 100 MeV/nucleon) + 0.28 (plus or minus 20 percent). This value agrees with the mean flux of modulated cosmic rays during the period of the nineteenth solar cycle. The mean flux of solar protons between 1965 and 1972 was 2.46

    Test Functions Space in Noncommutative Quantum Field Theory

    Full text link
    It is proven that the ⋆\star-product of field operators implies that the space of test functions in the Wightman approach to noncommutative quantum field theory is one of the Gel'fand-Shilov spaces SβS^{\beta} with β<1/2\beta < 1/2. This class of test functions smears the noncommutative Wightman functions, which are in this case generalized distributions, sometimes called hyperfunctions. The existence and determination of the class of the test function spaces in NC QFT is important for any rigorous treatment in the Wightman approach.Comment: 10 pages, clarification of formula (1.6), typos fixed, minor language correction

    Reconstruction of Scalar Potentials in Modified Gravity Models

    Full text link
    We employ the superpotential technique for the reconstruction of cosmological models with a non-minimally coupled scalar field evolving on a spatially flat Friedmann-Robertson-Walker background. The key point in this method is that the Hubble parameter is considered as a function of the scalar field and this allows one to reconstruct the scalar field potential and determine the dynamics of the field itself, without a priori fixing the Hubble parameter as a function of time or of the scale factor. The scalar field potentials that lead to de Sitter or asymptotic de Sitter solutions, and those that reproduce the cosmological evolution given by Einstein-Hilbert action plus a barotropic perfect fluid, have been obtained.Comment: 12 pages, 2 figures, accepted for publication in PR

    Interdependence between integrable cosmological models with minimal and non-minimal coupling

    Full text link
    We consider the relation between exact solutions of cosmological models having minimally and non-minimally coupled scalar fields. This is done for a particular class of solvable models which, in the Einstein frame, have potentials depending on hyperbolic functions and in the Jordan frame, where the non-minimal coupling is conformal, possess a relatively simple dynamics. We show that a particular model in this class can be generalized to the cases of closed and open Friedmann universes and still exhibits a simple dynamics. Further we illustrate the conditions for the existences of bounces in some sub-classes of the set of integrable models we have considered.Comment: 15 pages, v2: figures and references added, accepted for publication in CQ
    • …
    corecore