883 research outputs found

    Thomas-Ehrman effect in a three-body model: 16^{16}Ne case

    Get PDF
    The dynamic mechanism of the Thomas-Ehrman shift is studied in three-cluster systems by example of 16^{16}Ne and 16^{16}C isobaric mirror partners. We predict configuration mixings for 0+0^+ and 2+2^+ states in 16^{16}Ne and 16^{16}C. Large isospin symmetry breaking on the level of wave function component weights is demonstrated for these states and discussed as three-body mechanism of Thomas-Ehrman shift. It is shown that the description of the Coulomb displacement energies requires a consistency among three parameters: the 16^{16}Ne decay energy ETE_T, the 15^{15}F ground state energy ErE_r, and the configuration mixing parameters for the 16^{16}Ne/16^{16}C 0+0^+ and 2+2^+ states. Basing on this analysis we infer the 15^{15}F 1/2+1/2^+ ground state energy to be Er=1.391.42E_r=1.39-1.42 MeV.Comment: 10 pages 8 figure

    Pauli-principle driven correlations in four-neutron nuclear decays

    Full text link
    Mechanism of simultaneous non-sequential four-neutron (4n4n) emission (or `true' 4n4n-decay) has been considered in phenomenological five-body approach. This approach is analogous to the model of the direct decay to the continuum often applied to 2n2n- and 2p2p-decays. It is demonstrated that 4n4n-decay fragments should have specific energy and angular correlations reflecting strong spatial correlations of `valence' nucleons orbiting in their 4n4n-precursors. Due to the Pauli exclusion principle, the valence neutrons are pushed to the symmetry-allowed configurations in the 4n4n-precursor structure, which causes a `Pauli focusing' effect. Prospects of the observation of the Pauli focusing have been considered for the 4n4n-precursors 7^7H and 28^{28}O. Fingerprints of their nuclear structure or/and decay dynamics are predicted

    Anomalous population of 10^{10}He states in reactions with 11^{11}Li

    Full text link
    Structure with the lowest energy observed in the 10^{10}He spectrum populated in the proton knockout reaction with 11^{11}Li beam has a peak at 1.21.51.2-1.5 MeV. This peak is usually interpreted as a resonant 0+0^+ ground state of 10^{10}He. Our theoretical calculations indicate that this peak is likely to be a pileup of 11^-, 0+0^+, and 2+2^+ excitations with very similar shapes. %We predict a very specific nature of the 11^- excitation in 10^{10}He. Moreover, the ``soft'' 11^- excitation appears to be the lowest one in energy. Such an anomalous continuum response is traced to the halo structure of 11^{11}Li providing extreme low energy shift to all the expected continuum excitations. Competitions of the initial state structure (ISS) and the final state interaction (FSI) effects on the spectrum and three-body correlations in 10^{10}He are discussed. Analogous effect of the extreme low-energy shift could also be expected in other cases of 2n2n emitters populated in reactions with halo nuclei. Simplified example of the 10^{10}He spectrum in α\alpha knockout from 14^{14}Be, is given. We also discuss limits on the properties of 9^{9}He stemming from the observed 10^{10}He spectrum.Comment: 10 pages, 13 figure

    Possibility to study a two-proton halo in 17^{17}Ne

    Full text link
    The nuclide 17^{17}Ne is studied theoretically in a three-body 15^{15}O+pp+pp model. We demonstrate that the experimental condition for existence of a proton halo in 17^{17}Ne can be reasonably quantified in terms of s/ds/d configuration mixing. We discuss experimental evidences for a proton halo in 17^{17}Ne. We define which kind of experimental data could elucidate this issue.Comment: 5 pages, 5 figure

    Problems with interpretation of 10^{10}He ground state

    Get PDF
    The continuum of 10^{10}He nucleus is studied theoretically in a three-body 8^{8}He+nn+nn model basing on the recent information concerning 9^9He spectrum [Golovkov, \textit{et al.}, Phys. Rev. C \textbf{76}, 021605(R) (2007)]. The 10^{10}He ground state (g.s.) candidate with structure [p1/2]2[p_{1/2}]^2 for new g.s. energy of 9^9He is predicted to be at about 2.02.32.0-2.3 MeV. The peak in the cross section associated with this state may be shifted to a lower energy (e.g. 1.2\sim 1.2 MeV) when 10^{10}He is populated in reactions with 11^{11}Li due to peculiar reaction mechanism. Formation of the low-energy (E<250E< 250 keV) ``alternative'' ground state with structure [s1/2]2[s_{1/2}]^2 is highly probable in 10^{10}He in the case of considerable attraction (e.g. a<5a<-5 fm) in the s-wave 9^9He channel, which properties are still quite uncertain. This result either questions the existing experimental low-energy spectrum of 10^{10}He or place a limit on the scattering length in 9^9He channel, which contradicts existing data.Comment: 14 pages, 13 figures, 1 tabl

    Decay mechanism and lifetime of 67^{67}Kr

    Full text link
    The lifetime of the recently discovered 2p2p emitter 67^{67}Kr was recently found considerably below the lower limit predicted theoretically. This communication addresses this issue.Different separation energy systematics are analyzed and different mechanisms for 2p2p emission are evaluated. It is found that the most plausible reason for this disagreement is a decay mechanism of 67^{67}Kr, which is not "true 2p2p" emission, but "transition dynamics" on the borderline between true 2p2p and sequential 2p2p decay mechanisms. If this is true, this imposes stringent limits Er=1.351.42E_r=1.35-1.42 MeV on the ground state energy of 66^{66}Br relative to the 65^{65}Se-pp threshold.Comment: 7 pages, 8 figure

    Two-proton radioactivity and three-body decay. V. Improved momentum distributions

    Get PDF
    Nowadays quantum-mechanical theory allows one to reliably calculate the processes of 2p radioactivity (true three-body decays) and the corresponding energy and angular correlations up to distances of the order of 1000 fm. However, the precision of modern experiments has now become sufficient to indicate some deficiency of the predicted theoretical distributions. In this paper we discuss the extrapolation along the classical trajectories as a method to improve the convergence of the theoretical energy and angular correlations at very large distances (of the order of atomic distances), where only the long-range Coulomb forces are still operating. The precision of this approach is demonstrated using the "exactly" solvable semianalytical models with simplified three-body Hamiltonians. It is also demonstrated that for heavy 2p emitters, the 2p decay momentum distributions can be sensitive to the effect of the screening by atomic electrons. We compare theoretical results with available experimental data.Comment: 13 pages, 18 figure

    Optimized design of universal two-qubit gates

    Full text link
    We construct optimized implementations of the CNOT and other universal two-qubit gates that, unlike many of the previously proposed protocols, are carried out in a single step. The new protocols require tunable inter-qubit couplings but, in return, show a significant improvements in the quality of gate operations. Our optimization procedure can be further extended to the combinations of elementary two-qubit as well as irreducible many-qubit gates.Comment: 6 pages, 2 figure

    A new class of photo-catalytic materials and a novel principle for efficient water splitting under infrared and visible light - MgB2 as unexpected example

    Full text link
    Water splitting is unanimously recognized as environment friendly, potentially low cost and renewable energy solution based on the future hydrogen economy. Especially appealing is photo-catalytic water splitting whereby a suitably chosen catalyst dramatically improves efficiency of the hydrogen production driven by direct sunlight and allows it to happen even at zero driving potential. Here, we suggest a new class of stable photo-catalysts and the corresponding principle for catalytic water splitting in which infrared and visible light play the main role in producing the photocurrent and hydrogen. The new class of catalysts based on ionic binary metals with layered graphite-like structures which effectively absorb visible and infrared light facilitating the reaction of water splitting, suppress the inverse reaction of ion recombination by separating ions due to internal electric fields existing near alternating layers, provide the sites for ion trapping of both polarities, and finally deliver the electrons and holes required to generate hydrogen and oxygen gases. As an example, we demonstrate conversion efficiency of 27 percent at bias voltage bias 0.5 V for magnesium di-boride working as a catalyst for photo-induced water splitting. We discuss its advantages over some existing materials and propose the underlying mechanism of photo-catalytic water splitting by binary layered metals

    Transition from direct to sequential two-proton decay in ss-dd shell nuclei

    Get PDF
    Transitions among different mechanisms of two-proton decay are studied in general. The introduced improved direct-decay model generalizes the semi-analytical models used before and provides flawless phenomenological description of three-body correlations in 2p2p decays. This is demonstrated by examples of the low-lying 16^{16}Ne state decays. Different forms of transition dynamic are shown to be highly probable beyond the proton dripline for the ss-dd shell nuclei. It is demonstrated that transition dynamic of 2p2p emitters can provide means for extraction of a width of the ground-state resonance of a core+pp subsystem of the core+2p2p system. Practical applicability of the method is demonstrated by properties of the 14^{14}F ground state derived from the ^{15}\mbox{Ne}\rightarrow ^{\,13\!\!}\mbox{O}+2p decay data and of the 29^{29}Cl ground state derived from the ^{30}\mbox{Ar}\rightarrow ^{\,28\!\!}\mbox{S}+2p decay data.Comment: 8 pages, 10 figure
    corecore