202 research outputs found

    The influence of multilayer metal-carbon coatings composition with different arrangement of functional layers on their surface morphology

    Full text link
    This research was supported by the grants of Belarussian Republican Foundation for Fundamental Research BRFFR № T17KIG-009

    Influence of Temperature from 20 to 100 °C on Specific Surface Energy and Fracture Toughness of Silicon Wafers

    Get PDF
    The influence of temperature in the range from 20 to 100 °C on the specific surface energy and fracture toughness of standard silicon wafers of three orientations (100), (110) and (111) was studied. Silicon wafers were heated on a special thermal platform with an autonomous heating controller, which was installed under the samples. At each temperature, the samples were kept for 10 min. The specific surface energy γ after exposure to temperature was determined by atomic force microscopy (AFM). Fracture toughness during and after exposure to temperature was determined by indentation followed by visualization of the deformation region using AFM. It has been established that the specific surface energy γ of Si wafers with orientation (100) and (111) increases with increasing temperature from 20 to 100 °C, and for orientation (110) it increases at temperatures from 20 to 80 °C, and then decreases. The diagonal length d of indentation marks, performed both during the heating process and after heating, decreases by increasing the temperature from 20 to 100 °C. The crack length c decreases on silicon wafers during indentation during heating from 20 to 100 °C, and after exposure to temperature, the length increases. When the plates are exposed to temperature, the fracture toughness KIC increases with increasing temperature: for orientation (100) – up to 1.61 ± 0.08 MPa·m1/2, for (110) – up to 1.60 ± 0.08 MPa·m1/2 and for (111) – up to 1.66 ± 0.04 MPa·m1/2. A direct correlation was established between KIC , measured during exposure to temperature, and an inverse correlation between KIC measured after exposure to temperature and specific surface energy for the (100) and (111) orientations. An inverse correlation was obtained by KIC at the (110) orientation when exposed to temperatures of 20–40 and 80–100 °C, and after exposure, a direct correlation was obtained. At 60 °C there is no correlation. The results obtained can be used to improve the mechanical properties of silicon wafers used in solar cells and microelectromechanical systems (operating at temperatures up to 100 °C)

    Влияние температуры от 20 до 100 °С на удельную поверхностную энергию и вязкость разрушения пластин кремния

    Get PDF
    The influence of temperature in the range from 20 to 100 °C on the specific surface energy and fracture toughness of standard silicon wafers of three orientations (100), (110) and (111) was studied. Silicon wafers were heated on a special thermal platform with an autonomous heating controller, which was installed under the samples. At each temperature, the samples were kept for 10 min. The specific surface energy γ after exposure to temperature was determined by atomic force microscopy (AFM). Fracture toughness during and after exposure to temperature was determined by indentation followed by visualization of the deformation region using AFM. It has been established that the specific surface energy γ of Si wafers with orientation (100) and (111) increases with increasing temperature from 20 to 100 °C, and for orientation (110) it increases at temperatures from 20 to 80 °C, and then decreases. The diagonal length d of indentation marks, performed both during the heating process and after heating, decreases by increasing the temperature from 20 to 100 °C. The crack length c decreases on silicon wafers during indentation during heating from 20 to 100 °C, and after exposure to temperature, the length increases. When the plates are exposed to temperature, the fracture toughness KIC increases with increasing temperature: for orientation (100) – up to 1.61 ± 0.08 MPa·m1/2, for (110) – up to 1.60 ± 0.08 MPa·m1/2 and for (111) – up to 1.66 ± 0.04 MPa·m1/2. A direct correlation was established between KIC, measured during  exposure to temperature, and an inverse correlation between KIC measured after exposure to temperature and specific surface energy for the (100) and (111) orientations. An inverse correlation was obtained by KIC at the (110) orientation when exposed to temperatures of 20–40 and 80–100 °C, and after exposure, a direct correlation was obtained. At 60 °C there is no correlation. The results obtained can be used to improve the mechanical properties of silicon wafers used in solar cells and microelectromechanical systems (operating at temperatures up to 100 °C).Проведены исследования влияния температуры в диапазоне от 20 до 100 °С на удельную поверхностную энергию и вязкость разрушения стандартных пластин кремния трёх ориентаций (100), (110) и (111). Пластины кремния нагревали на специальной термоплатформе с автономным контроллером нагрева, которую устанавливали под образцы. При каждой температуре образцы выдерживали в течении 10 мин. Удельная поверхностная энергия γ после воздействия температуры определялась методом атомно-силовой микроскопии (АСМ). Вязкость разрушения во время и после воздействия температуры определялась методом индентирования с последующей визуализацией области деформации методом АСМ. Установлено, что удельная поверхностная энергия γ пластин кремния ориентации (100) и (111) увеличивается с увеличением температуры от 20 до 100 °С, у ориентации (110) – увеличивается при температурах от 20 до 80 °С, а затем снижается. Длина диагонали d отпечатков индентирования, выполняемых как в процессе нагрева, так и после нагрева, уменьшается с увеличением температуры от 20 до 100 °С. Длина трещин c уменьшается на пластинах кремния при индентировании во время нагрева от 20 до 100 °С, а после воздействия температуры длина увеличивается. Во время воздействия температуры на пластины вязкость разрушения KIC увеличивается с увеличением температуры: для ориентации (100) – 1,61 ± 0,08 MПa·м1/2, для (110) – до 1,60 ± 0,08 MПa·м1/2 и для (111) – до 1,66 ± 0,04 MПa·м1/2. Установлена прямая корреляция KIC , измеренной во время воздействия температуры, и обратная корреляция KIC , измеренной после воздействия температуры, c удельной поверхностной энергией для ориентаций (100) и (111). Обратная корреляция KIC с γ получена на ориентации (110) при воздействии температур 20–40 и 80–100 °С, а после воздействия – прямая корреляция. При 60 °С корреляции нет. Полученные результаты могут быть использованы для улучшения механических свойств кремниевых пластин, используемых в солнечных элементах и микроэлектромеханических системах (работающих при температурах до 100 °С)

    Determination of Crack Resistance of the Cover and Slide Glass by Indentation Method with the Visualization Using Atomic Force Microscopy

    Get PDF
    Crack resistance of two types of glass was studied – cover glass (0.17 mm thick) and slide glass (2 mm thick) using an improved technique through the use of the probe methods, which makes it possible to increase the accuracy of determining the crack resistance of glass. Colorless silicate glass was used. Crack resistance was determined by the Vickers pyramid indentation method. Microstructure of glasses surface and deformation region after indentation were studied using an atomic force microscope. Mechanical properties of glasses were determined by nanoindentation. Surface relief of a glass slide is rougher than that one of a cover glass. Roughness Rz for a cover glass is less than for a slide glass. Specific surface energy value of 0.26 N/m is higher for the slide glass compared to the coverslip. One elastic modulus value E of the cover glass is 48 GPa, and that one of the slide glass is 58 GPa. The microhardness value H is almost the same for by the glasses and amounts to 6.7 GPa for a slide glass and 6.4 GPa for a cover glass. Atomic force microscope images of deformation region after indentation with a Vickers pyramid show that the first cracks appear at a load of 1 N on the slide glass, and at 2 N on the cover glass. At a load of 3 N, the cover glass is destroyed. Based on the results of crack resistance calculations it was found that critical stress intensity coefficient KIC values are 1.42 MPa∙m1/2 for a glass slide, and 1.10 MPa∙m1/2 for a cover glass

    Усовершенствованная модель прессования порошковой смеси в валковом прессе

    Get PDF
    A new mathematical model of mineral fertilizer compacting using a roll compactor is developed. This model is based on the transition to the values of stress tensor components averaged over the cross-sectional area of the powder mixture flow. To define these stresses, equations of equilibrium of the elementary layer determined in the mixture by two planes perpendicular to the flow direction are composed. To obtain relatively simple analytical relations in the calculations, the hypothesis of a power-law dependence of hydrostatic pressure on mixture density, accepted in the framework of the Johansen model, was used. In order to take into account changes in the mechanical characteristics of the mixture (angle of internal friction, coefficient of external friction, transverse strain coefficient) while compacting, we approximated the known experimental dependencies of the corresponding characteristics on the density. The inter-particle cohesion parameter was taken to be proportional to the hydrostatic pressure. The model allows calculating the gap between the rolls surfaces for a given initial bulk density and the required flake density. With the known gap value, the distribution of the axial average stresses in the powder mixture, the normal and shear stresses on the rolls’ surfaces are determined. The results of the calculations of the rolls surface gap and the normal roll pressure diagram are compared with the experimental data given in the literature for the urea compacting process.Разработана математическая модель прессования минерального удобрения на валковом прессе. Данная модель основана на переходе к усредненным по площади поперечного сечения потока порошковой смеси значениям компонент тензора напряжений. Для определения этих напряжений составляются уравнения равновесия элементарного слоя, выделяемого в смеси двумя плоскостями, перпендикулярными к направлению потока. Для обеспечения возможности получения относительно простых аналитических соотношений при расчетах использована принятая в рамках модели Йохансена гипотеза о степенной зависимости гидростатического давления от плотности смеси. Для учета изменения механических характеристик смеси (угла внутреннего трения, коэффициента внешнего трения, коэффициента поперечной деформации) в процессе прессования производилась аппроксимация известных экспериментальных зависимостей соответствующих характеристик от плотности. Параметр межчастичного сцепления принимался пропорциональным гидростатическому давлению. Модель позволяет вычислить значение зазора между поверхностями валов при заданных значениях исходной насыпной плотности смеси и требуемой плотности плитки. При известном значении зазора устанавливаются распределения осевых усредненных напряжений в порошковой смеси, нормального и сдвигового напряжений на поверхности валов. Результаты расчетов зазора между поверхностями валов и эпюры нормального давления на вал сопоставлены с приведенными в литературных источниках экспериментальными данными для процесса прессования мочевины

    Моделирование радиальных колебаний подпружиненного валка вальц-пресса

    Get PDF
    Carried out simulation of oscillations of a spring-loaded roll in a roll compactor when interacting the powder being compacted with the rolls. Considering the separation of the feed and compaction areas in the contact area of the roll with the material being compacted, we obtain the dependence of the force acting on the roll on the gap size between the rolls. It is shown that this dependence is non-linear, and it can be described with a sufficiently high accuracy degree by an exponential function with a negative exponent in the working range. The given numerical solution of the equation of free nonlinear oscillations of the spring-loaded roll has shown that considering the deformation of the material being compacted leads to a reduction of the natural frequency of the system by 20–25 % compared to the case, where the pressure force of the powder on the roll is assumed to be independent of the gap size. The nonlinearity of the dependence of the pressure force on the gap also leads to the increase by 10 % in the calculated values of the maximum displacements. The developed approach to the calculation of oscillations of the spring-loaded roll in the roll compactor enables to take into account the peculiarities of deformation of the powder being compacted during its interaction with the rolls. In addition, it allows estimating the frequencies and oscillation amplitudes and setting the optimum range of spring rate values, at which the occurrence of resonance in the machine is not possible.Выполнено моделирование колебаний подпружиненного валка вальц-пресса при взаимодействии прессуемого порошка с валками. С учетом выделения в области контакта валка с прессуемым материалом зон подачи и прессования, получена зависимость силы, действующей на валок, от величины зазора между валками. Показано, что эта зависимость имеет нелинейный характер, причем в рабочем диапазоне с достаточно высокой степенью точности может быть описана степенной функцией с отрицательным показателем степени. Приведено численное решение уравнения свободных нелинейных колебаний подпружиненного валка, которое продемонстрировало, что учет деформирования сжимаемого материала приводит к снижению частот собственных колебаний системы на 20–25 % по сравнению со случаем, при котором сила давления порошка на валок принимается не зависящей от величины зазора. Нелинейность зависимости силы давления от зазора приводит также к увеличению на 10 % расчетных значений максимальных смещений. Разработанный подход к расчету колебаний подрессоренного валка вальц-пресса позволяет учесть особенности деформирования прессуемого порошка при его взаимодействии с валками, а также позволяет, наряду с оценкой частот и амплитуд колебаний, установить оптимальный диапазон значений коэффициента жесткости пружины, при котором появление резонанса в машине будет невозможно

    Определение вязкости разрушения алмазоподобных тонких покрытий на мягком и твердом подслоях методом наноиндентирования

    Get PDF
    The results of a study of the structure and physical and mechanical properties of diamond-like coatings (DLC) on sublayers of different hardness are presented. The coatings have high hardness, but at the same time they are prone to delamination and destruction due to high residual internal stresses. The fracture toughness was determined by the nanoindentation method and the energy calculation method using approach-retraction curves. Atomic force microscopy was used to study the surface structure and deformation region after nanoindentation. A change in the surface structure and roughness of DLC was established depending on the sublayer. Low roughness is characteristic of DLC on a copper sublayer. Applying а titanium sublayer leads to an increase in the elastic modulus of the DLC. The microhardness of both coatings is practically the same. AFM studies have shown two different types of DLC deformation after nanoindentation with a Berkovich pyramid. A crack on coatings with a copper sublayer propagates around the indentation print, and on an DLC with a titanium sublayer, it propagates along the edges of the indentation. It was found that the fracture toughness of DLC on a Ti sublayer is 33 % lower compared to DLC on a Cu sublayer due to a decrease in stress relaxation inside the coating. The considered coatings can be used in microelectronics for protection against mechanical damage on contacting and rubbing surfaces.Представлены результаты исследования структуры, физико-механических свойств обладающих высокой твердостью, но в то же время склонностью к расслоению и разрушению из-за высоких остаточных внутренних напряжений алмазоподобных покрытий (АПП) на подслоях различной твердости. Вязкость разрушения определяли методом наноиндентирования и энергетическим методом расчета с использованием кривых подвода-отвода. Для исследования структуры поверхности и области деформации после наноиндентирования использовали атомносиловую микроскопию. Установлено изменение структуры поверхности и шероховатости АПП в зависимости от подслоя. Низкая шероховатость характерна для АПП на медном подслое. Нанесение титанового подслоя приводит к повышению модуля упругости АПП. Микротвердость у обоих покрытий практически одинаковая. АСМ-исследования показали два различных типа деформации АПП после наноиндентирования пирамидой Берковича. Трещина на покрытиях с медным подслоем распространяется вокруг отпечатка индентирования, а на АПП с титановым подслоем – вдоль граней отпечатка. Установлено, что вязкость разрушения у АПП на титановом подслое на 33 % ниже по сравнению с АПП на медном подслое за счет уменьшения релаксации напряжений внутри покрытия. Рассмотренные покрытия воз можно применять в микроэлектронике для защиты от механических повреждений контактирующих и трущихся поверхностей
    corecore