20 research outputs found

    Morphology and Phylogeny of a New Woodruffiid Ciliate, \u3cem\u3eEtoschophrya inornata\u3c/em\u3e sp. n. (Ciliophora, Colpodea, Platyophryida), with an Account on Evolution of Platyophryids

    Get PDF
    We studied the morphology, morphometry, resting cysts and molecular phylogeny of a new woodruffiid ciliate, Etoschophrya inornata, from ephemeral puddles and two lacustrine habitats in Idaho, North-west USA. Up to now, the genus Etoschophrya has included a single species, Etoschophrya oscillatoriophaga, from which our new form is distinguished by (i) the absence of interkinetal cortical granules and, consequently, the absence of extrusible red material in methyl green-pyronin stains, (ii) usually ≥5 adoral membranelles vs. usually four, (iii) greater length and length/width ratio, (iv) prominent cortical furrows vs. inconspicuous and (v) adaptation to non-saline semi-terrestrial and lacustrine habitats in the Nearctic vs. highly saline alkaline Afrotropic soil habitats. Resting cysts have two distinct membranes and a thick hyaline mucous pericyst layer. However, only one membrane persists in older cysts. Like its congener, Etoschophrya inornata feeds exclusively on filamentous cyanobacteria. The 18S rRNA gene sequence places this species in a strongly supported clade with Kuklikophrya ougandae basal to the other platyophryids. We include a morphologic cladistic analysis of platyophryid ciliates and present a hypothetical scenario for the evolution of the platyophryid oral structures

    Morphologic and Molecular Description of \u3cem\u3eMetopus fuscus\u3c/em\u3e Kahl from North America and New rDNA Sequences from Seven Metopids (Armophorea, Metopidae)

    Get PDF
    Most species in the large ciliate genus Metopus Claparède & Lachmann, 1858 lack detailed descriptions based on modern morphologic and molecular methods. This lack of data for the vast majority of species hampers application of a morphospecies approach to the taxonomy of Metopus and other armophorids. In this report we redescribe the large species, Metopus fuscus Kahl, 1927 based on in vivo observation, silver impregnation, scanning electron microscopy, and single-cell 18S rDNA sequencing of a freshwater North American (Idaho) population. Metopus fuscus invariably has a perinuclear envelope of endosymbiotic bacteria not found in other species. Unlike the original description of a single row of coarse granules between ciliary rows, the Idaho population has five loose rows of small interkinetal granules. We discuss the possible importance of this character in metopids. We also provide a phylogenetic analysis including seven other new metopid 18S rDNA sequences: Brachonella spiralis, B. galeata, Metopus laminarius, M. setosus, M. striatus, M. violaceus, Palmarella lata. Metopus fuscus and M. setosus form a fully supported clade, challenging previous morphospecies groupings. We discuss some ambiguities of armophorid morphologic terminology in the earlier literature. Our phylogenetic analysis of Idaho metopids indicates that the genera Metopus and Brachonella are both nonmonophyletic

    Morphology and Phylogeny of \u3cem\u3eBryophryoides ocellatus\u3c/em\u3e N. G., N. Sp. (Ciliophora, Colpodea) from In Situ Soil Percolates of Idaho, U.S.A.

    No full text
    We describe the morphology and 18S rDNA phylogeny of Bryophryoides ocellatus n. g., n. sp., a bryophryid ciliate inhabiting in situ soil percolates from Idaho, U.S.A. The new genus is distinguished from other bryophryid genera by a combination of the following features: (1) kreyellid (irregularly meshed) silverline pattern, (2) polymorphic adoral organelles in the preoral suture, (3) absence of vestibular kineties. In phylogenetic analyses, Bryophryoides ocellatus is most closely related to Bryophrya gemmea. The 18S rDNA sequence pairwise distance of 2% between these genera, while similar to that between many colpodidan species, exceeds that between some colpodidan genera (e.g. Mykophagophrys and Pseudoplatyophrya, 1.1%), further supporting establishment of the new genus. Topology hypothesis testing strongly supports the monophyly of the Colpodida including the bryophryids. Despite weak nodal support, tests of topology constraints narrowly reject the non-monophyly of the sequenced Bryophryidae (Bryophrya + Bryophryoides + Notoxoma). Likewise, the monophyletic origin of the sequenced Bryophryidae is indicated in the phylogenetic networks though with low support

    Morphology, Morphometrics, and Molecular Characterization of \u3cem\u3eBryophrya gemmea\u3c/em\u3e n. sp. (Ciliophora, Colpodea): Implications for the Phylogeny and Evolutionary Scenario for the Formation of Oral Ciliature in the Order Colpodida

    No full text
    We studied the morphology, morphometry, resting, and reproductive cysts, as well as the molecular phylogeny of Bryophrya gemmea n. sp., a colpodid ciliate that was discovered in ephemeral puddles in Idaho, northwest United States. This new species is distinguished from congeners by the irregularly pentagonal adoral organelles, four to five vestibular kineties, the single micronucleus, and one to three rows of brightly refractive protuberant interkinetal cortical granules to the right of the preoral suture. Resting cysts have two distinct membranes and an outer mucous coat. As typical for most colpodids, reproduction occurs in division cysts but details of ontogenesis are unknown. The 18S rRNA gene sequence shows only weak support for the phylogenetic relationship between Bryophrya and the bryophryid genus Notoxoma previously inferred from morphologic characters. Further, our molecular phylogenies classify bryophryids rather basal within the order Colpodida, not supporting ordinal status suggested by morphologists. Based on molecular data and morphologic characters, the colpodid genus Ilsiella is removed from the family Marynidae and placed in a new family, Ilsiellidae. Considering the molecular data, an evolutionary scenario for the formation of colpodid oral structures from a cyrtolophosidid ancestor through a bryophryid intermediate is proposed

    Taxonomic revision of the genus Elmomorphus Sharp, 1888 I. Japanese and Korean species (Coleoptera: Dryopidae)

    No full text
    The species of Elmomorphus Sharp, 1888 occurring in Japan and Korea are redescribed and illustrated: E. brevicornis Sharp, 1888 (Japan, Korea) and E. amamiensis Nomura, 1959 (Japan). The standard barcoding fragment of the mitochondrial gene coding for cytochrome c oxidase subunit I (COI) was sequenced and used together with morphological characters to delimit the taxonomic boundaries of the two species. To assess their morphometric variation, eight morphometric characters were measured and statistically evaluated using principal component analysis. The two species of Elmomorphus formed distinct and well-separated clusters in the COI tree. Their interspecific divergence is very high, ranging from 22.7 to 23.9%. On the other hand, morphometric characters, including those previously presumed to be diagnostic, overlap and per se do not allow unambiguous species identification. Reliable morphological distinguishing characters are described for males and females. Molecular data along with the morphological evidence strongly confirm the species status of E. amamiensis. An identification key to the Japanese and Korean species is provided

    Morphological and molecular phylogeny of dileptid and tracheliid ciliates: Resolution at the base of the class Litostomatea (Ciliophora, Rhynchostomatia)

    Get PDF
    Dileptid and tracheliid ciliates have been traditionally classified within the subclass Haptoria of the class Litostomatea. However, their phylogenetic position among haptorians has been controversial and indicated that they may play a key role in understanding litostomatean evolution. In order to reconstruct the evolutionary history of dileptids and tracheliids, and to unravel their affinity to other haptorians, we have used a cladistic approach based on morphological evidence and a phylogenetic approach based on 18S rRNA gene sequences, including eight new ones. The molecular trees demonstrate that dileptids and tracheliids represent a separate subclass, Rhynchostomatia, that is sister to the subclasses Haptoria and Trichostomatia. The Rhynchostomatia are characterized by a ventrally located oral opening at the base of a proboscis that carries a complex oral ciliature. We have recognized two orders within Rhynchostomatia. The new order Tracheliida is monotypic, while the order Dileptida comprises two families: the new, typically bimacronucleate family Dimacrocaryonidae and the multimacronucleate family Dileptidae. The Haptoria evolved from the last common ancestor of the Litostomatea by polarization of the body, the oral opening locating more or less apically and the oral ciliature simplifying. The Trichostomatia originated from a microaerophylic haptorian by further simplification of the oral ciliature, possibly due to an endosymbiotic lifestyle

    Two Anaerobic Ciliates (Ciliophora, Armophorea) from China: Morphology and SSU rDNA Sequence, with Report of a New Species, Metopus paravestitus nov. spec

    No full text
    The morphology and phylogeny of two metopid ciliates, collected from anaerobic habitats in China, were investigated using live observation, protargol staining method, and SSU rDNA sequencing. The new species Metopus paravestitus nov. spec. can be distinguished by a combination of the following features: oblong cell with densely arranged ectobiotic prokaryotes perpendicular to cell surface, filiform intracytoplasmic structures packed in the anterior portion of the cell. Our work also demonstrates the wide geographical distribution of Metopus es (Muller, 1776) Lauterborn, 1916. The order Metopida is consistently depicted as a paraphylum in SSU rDNA phylogeny. Metopus paravestitus nov. spec. is closely related to its marine congeners than to freshwater forms. The present study confirms once again the non-monophyly of the genus Metopus and genus Metopidae
    corecore