8,469 research outputs found

    Optical bistability in subwavelength apertures containing nonlinear media

    Full text link
    We develop a self-consistent method to study the optical response of metallic gratings with nonlinear media embedded within their subwavelength slits. An optical Kerr nonlinearity is considered. Due to the large E-fields associated with the excitation of the transmission resonances appearing in this type of structures, moderate incoming fluxes result in drastic changes in the transmission spectra. Importantly, optical bistability is obtained for certain ranges of both flux and wavelength.Comment: 4 pages, 4 figure

    Restrictions on parameters of power-law magnetic field decay for accreting isolated neutron stars

    Get PDF
    In this short note we discuss the influence of power-law magnetic field decay on the evolution of old accreting isolated neutron stars. We show, that, contrary to exponential field decay (Popov & Prokhorov 2000), no additional restrictions can be made for the parameters of power-law decay from the statistics of isolated neutron star candidates in ROSAT observations. We also briefly discuss the fate of old magnetars with and without field decay, and describe parameters of old accreting magnetars.Comment: 8 pages including 3 PostScript figure

    Field Theoretical Description of Quantum Hall Edge Reconstruction

    Full text link
    We propose a generalization of the chiral Luttinger liquid theory to allow for a unified description of quantum Hall edges with or without edge reconstruction. Within this description edge reconstruction is found to be a quantum phase transition in the universality class of one-dimensional dilute Bose gas transition, whose critical behavior can be obtained exactly. At principal filling factors ν=1/m\nu=1/m, we show the additional edge modes due to edge reconstruction modifies the point contact tunneling exponent in the low energy limit, by a small and non-universal amount.Comment: 4 pages with 1 ps figure embedde

    Quantitative comparison between theoretical predictions and experimental results for the BCS-BEC crossover

    Full text link
    Theoretical predictions for the BCS-BEC crossover of trapped Fermi atoms are compared with recent experimental results for the density profiles of 6^6Li. The calculations rest on a single theoretical approach that includes pairing fluctuations beyond mean field. Excellent agreement with experimental results is obtained. Theoretical predictions for the zero-temperature chemical potential and gap at the unitarity limit are also found to compare extremely well with Quantum Monte Carlo simulations and with recent experimental results.Comment: 4 pages, 3 eps figure

    Atomic quantum dots coupled to BEC reservoirs

    Full text link
    We study the dynamics of an atomic quantum dot, i.e. a single atom in a tight optical trap which is coupled to a superfluid reservoir via laser transitions. Quantum interference between the collisional interactions and the laser induced coupling to the phase fluctuations of the condensate results in a tunable coupling of the dot to a dissipative phonon bath, allowing an essentially complete decoupling from the environment. Quantum dots embedded in a 1D Luttinger liquid of cold bosonic atoms realize a spin-Boson model with ohmic coupling, which exhibits a dissipative phase transition and allows to directly measure atomic Luttinger parameters.Comment: 5 pages, 2 figures. Submitted version. For the particular 1D case and its relation with Kondo physics see cond-mat/021241

    Popov approximation for composite bosons in the BCS-BEC crossover

    Full text link
    Theoretical treatments of the BCS-BEC crossover need to provide as accurate as possible descriptions of the two regimes where the diluteness condition applies, either in terms of the constituent fermions (BCS limit) or of the composite bosons which form as bound-fermion pairs (BEC limit). This has to occur via a single fermionic theory that bridges across these two limiting representations. In this paper, we set up successive improvements of the fermionic theory, that result into composite bosons described at the level of either the Bogoliubov or the Popov approximations for point-like bosons. This work bears on the recent experimental advances on the BCS-BEC crossover with trapped Fermi atoms, which show the need for accurate theoretical descriptions of BEC side of the crossover.Comment: 13 pages, 4 figure

    Super Calabi-Yau's and Special Lagrangians

    Full text link
    We apply mirror symmetry to the super Calabi-Yau manifold CP^{(n|n+1)} and show that the mirror can be recast in a form which depends only on the superdimension and which is reminiscent of a generalized conifold. We discuss its geometrical properties in comparison to the familiar conifold geometry. In the second part of the paper examples of special-Lagrangian submanifolds are constructed for a class of super Calabi-Yau's. We finally comment on their infinitesimal deformations.Comment: 20 pages, no figures, latex; v2: references added; v3: minor clarifications added, version published in JHE

    Matrix Models and D-branes in Twistor String Theory

    Full text link
    We construct two matrix models from twistor string theory: one by dimensional reduction onto a rational curve and another one by introducing noncommutative coordinates on the fibres of the supertwistor space P^(3|4)->CP^1. We comment on the interpretation of our matrix models in terms of topological D-branes and relate them to a recently proposed string field theory. By extending one of the models, we can carry over all the ingredients of the super ADHM construction to a D-brane configuration in the supertwistor space P^(3|4). Eventually, we present the analogue picture for the (super) Nahm construction.Comment: 1+37 pages, reference added, JHEP style, published versio

    The Neutron Stars Census

    Get PDF
    The paucity of old isolated accreting neutron stars in ROSAT observations is used to derive a lower limit on the mean velocity of neutron stars at birth. The secular evolution of the population is simulated following the paths of a statistical sample of stars for different values of the initial kick velocity, drawn from an isotropic Gaussian distribution with mean velocity 0≤<V>≤5500\leq < V>\leq 550 kms−1{\rm km s^{-1}}. The spin--down, induced by dipole losses and the interaction with the ambient medium, is tracked together with the dynamical evolution in the Galactic potential, allowing for the determination of the fraction of stars which are, at present, in each of the four possible stages: Ejector, Propeller, Accretor, and Georotator. Taking from the ROSAT All Sky Survey an upper limit of ∼10\sim 10 accreting neutron stars within ∼140\sim 140 pc from the Sun, we infer a lower bound for the mean kick velocity, ≳200−300 \gtrsim 200-300 kms−1,{\rm km s^{-1}}, corresponding to a velocity dispersion σV≳125−190\sigma_V\gtrsim 125-190 km s−1^{-1}. The same conclusion is reached for both a constant magnetic field (B∼1012B\sim 10^{12} G) and a magnetic field decaying exponentially with a timescale ∼109\sim 10^9 yr. Such high velocities are consistent with those derived from radio pulsar observations. Present results, moreover, constrain the fraction of low velocity stars, which could have escaped pulsar statistics, to less than 1%.Comment: 13 pages, 6 PostScript figures, accepted to Ap
    • …
    corecore