2,225 research outputs found

    Room-temperature ferromagnetism in nanoparticles of superconducting materials

    Get PDF
    Nanoparticles of superconducting YBa2Cu3O7-delta (YBCO) (Tc = 91 K) exhibit ferromagnetism at room temperature while the bulk YBCO, obtained by heating the nanoparticles at high temperature (940 degree C), shows a linear magnetization curve. Across the superconducting transition temperature, the magnetization curve changes from that of a soft ferromagnet to a superconductor. Furthermore, our experiments reveal that not only nanoparticles of metal oxides but also metal nitrides such as NbN (Tc = 6 - 12 K) and delta-MoN (Tc ~ 6 K) exhibit room-temperature ferromagnetism.Comment: 11 pages, 6 figure

    The structure of two new non-centrosymmetric phases of oxygen deficient bismuth manganite

    Get PDF
    The structure of two new phases in the bismuth manganite system are reported. The phases were determined by electron diffraction studies of two oxygen-deficient bulk samples. The first phase, a minority component of bulk BiMnO2.94 forms a n=2 Ruddlesden-Popper phase with space group Cmc21 . The second phase, from bulk BiMnO2.99 , is an orthorhombic structure with spacegroup Pmn21 and a unit cell approximately equal to 4 × √ 2 × 2 √ 2 times the parent perovskite cell. Importantly both phases are non-centrosymmetric and offer further potential for multiferroic studies.The authors would like to thank EPSRC for financial support for this work through grant EP/H017712

    Valence instability of cerium under pressure in the Kondo-like perovskite La0.1_{0.1}Ce0.4_{0.4}Sr0.5_{0.5}MnO3_3

    Full text link
    Effect of hydrostatic pressure and magnetic field on electrical resistance of the Kondo-like perovskite manganese oxide, La0.1_{0.1}Ce0.4_{0.4}Sr0.5_{0.5}MnO3_3 with a ferrimagnetic ground state, have been investigated up to 2.1 GPa and 9 T. In this compound, the Mn-moments undergo double exchange mediated ferromagnetic ordering at TCT_{\rm C} \sim 280 K and there is a resistance maximum, TmaxT_{\rm max} at about 130 K which is correlated with an antiferromagnetic ordering of {\it cerium} with respect to the Mn-sublattice moments. Under pressure, the TmaxT_{\rm max} shifts to lower temperature at a rate of dTmaxT_{max}/dPP = -162 K/GPa and disappears at a critical pressure PcP_{\rm c} \sim 0.9 GPa. Further, the coefficient, mm of logT-logT term due to Kondo scattering decreases linearly with increase of pressure showing an inflection point in the vicinity of PcP_{\rm c}. These results suggest that {\it cerium} undergoes a transition from Ce3+^{3+} state to Ce4+^{4+}/Ce3+^{3+} mixed valence state under pressure. In contrast to pressure effect, the applied magnetic field shifts TmaxT_{\rm max} to higher temperature presumably due to enhanced ferromagnetic Mn moments.Comment: to be published in Phys. Rev. B (rapid commun

    Observation of a dissipative phase transition in a one-dimensional circuit QED lattice

    Full text link
    Condensed matter physics has been driven forward by significant experimental and theoretical progress in the study and understanding of equilibrium phase transitions based on symmetry and topology. However, nonequilibrium phase transitions have remained a challenge, in part due to their complexity in theoretical descriptions and the additional experimental difficulties in systematically controlling systems out of equilibrium. Here, we study a one-dimensional chain of 72 microwave cavities, each coupled to a superconducting qubit, and coherently drive the system into a nonequilibrium steady state. We find experimental evidence for a dissipative phase transition in the system in which the steady state changes dramatically as the mean photon number is increased. Near the boundary between the two observed phases, the system demonstrates bistability, with characteristic switching times as long as 60 ms -- far longer than any of the intrinsic rates known for the system. This experiment demonstrates the power of circuit QED systems for studying nonequilibrium condensed matter physics and paves the way for future experiments exploring nonequilbrium physics with many-body quantum optics

    Can a gravitational wave and a magnetic monopole coexist?

    Full text link
    We investigate the behavior of small perturbations around the Kaluza-Klein monopole in the five dimensional space-time. We find that the even parity gravitational wave does not propagate in the five dimensional space-time with Kaluza-Klein monopole provided that the gravitational wave is constant in the fifth direction. We conclude that a gravitational wave and a U(1) magnetic monopole do not coexist in five dimensional Kaluza-Klein spacetime.Comment: 10 pages, LaTeX. To appear in Modern Physics Letters

    Field-induced Polar Order at the N\'eel Temperature of Chromium in Rare-earth Orthochromites: Interplay of Rare-earth and Cr Magnetism

    Full text link
    We report field-induced switchable polarization (P = 0.2 ~ 0.8 microC/cm2) below the N\'eel temperature of chromium (TN Cr) in weakly ferromagnetic rareearth orthochromites, RCrO3 (R=rareearth) but only when the rareearth ion is magnetic. Intriguingly, the polarization in ErCrO3 (TC ~ 133 K) disappears at a spin reorientation (Morin) transition (TSR ~ 22 K) below which the weak ferromagnetism associated with the Cr sublattice also disappears, demonstrating the crucial role of weak ferromagnetism in inducing the polar order. Further, the polarization (P) is strongly influenced by applied magnetic field, indicating a strong magneto electric effect. We suggest that the polar order occurs in RCrO3, due to the combined effect of poling field that breaks the symmetry and the exchange field on R ion from Cr sublattice stabilizes the polar state. We propose that a similar mechanism could work in the isostructural rareearth orthoferrites, RFeO3 as well.Comment: 31 pages (Manuscript(6 figures)+supplemental information(8 figures)
    corecore