499 research outputs found

    Symptomatic and asymptomatic secondary transmission of Cryptosporidium parvum following two related outbreaks in schoolchildren

    Get PDF
    Two related outbreaks (in 2009 and 2012) of cryptosporidiosis in Norwegian schoolchildren during a stay at a remote holiday farm provided us with a natural experiment to investigate possible secondary transmission of Cryptosporidium parvum IIa A19G1R1. After the children had returned home, clinical data and stool samples were obtained from their household contacts. Samples were investigated for the presence of Cryptosporidium oocysts by immunofluorescence antibody test. We found both asymptomatic and symptomatic infections, which are likely to have been secondary transmission. Laboratory-confirmed transmission rate was 17% [4/23, 95% confidence interval (CI) 7·0–37·1] in the 2009 outbreak, and 0% (95% CI 0–16·8) in the 2012 outbreak. Using a clinical definition, the probable secondary transmission rate in the 2012 outbreak was 8% (7/83, 95% CI 4·1–16·4). These findings highlight the importance of hygienic and public health measures during outbreaks or individual cases of cryptosporidiosis. We discuss our findings in light of previous studies reporting varying secondary transmission rates of Cryptosporidium spp

    The significance of c.690G>T polymorphism (rs34529039) and expression of the CEBPA gene in ovarian cancer outcome

    No full text
    The CEBPA gene is known to be mutated or abnormally expressed in several cancers. This is the first study assessing the clinical impact of CEBPA gene status and expression on the ovarian cancer outcome. The CEBPA gene sequence was analyzed in 118 ovarian cancer patients (44 platinum/cyclophosphamide (PC)-treated and 74 taxane/platinum (TP)-treated), both in tumors and blood samples, and in blood from 236 healthy women, using PCR-Sanger sequencing and Real-Time quantitative PCR (qPCR)-based genotyping methods, respectively. The CEBPA mRNA level was examined with Reverse Transcription quantitative PCR (RT-qPCR). The results were correlated to different clinicopathological parameters. Thirty of 118 (25.4%) tumors harbored the CEBPA synonymous c.690G>T polymorphism (rs34529039), that we showed to be related to up-regulation of CEBPA mRNA levels (p=0.0059). The presence of the polymorphism was significantly associated with poor prognosis (p=0.005) and poor response to the PC chemotherapy regimen (p=0.024). In accordance, elevated CEBPA mRNA levels negatively affected patient survival (pT, p.(Thr230Thr) (rs34529039) polymorphism of the CEBPA gene, together with up-regulation of its mRNA expression, are negative factors worsening ovarian cancer outcome. Their adverse clinical effect depends on a therapeutic regimen used, which might make them potential prognostic and predictive biomarkers for response to DNA-damaging chemotherapy

    Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption

    Get PDF
    Neutrinos interact only very weakly, so they are extremely penetrating. However, the theoretical neutrino-nucleon interaction cross section rises with energy such that, at energies above 40 TeV, neutrinos are expected to be absorbed as they pass through the Earth. Experimentally, the cross section has been measured only at the relatively low energies (below 400 GeV) available at neutrino beams from accelerators \cite{Agashe:2014kda, Formaggio:2013kya}. Here we report the first measurement of neutrino absorption in the Earth, using a sample of 10,784 energetic upward-going neutrino-induced muons observed with the IceCube Neutrino Observatory. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories through the Earth. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the cross section for neutrino energies between 6.3 TeV and 980 TeV, more than an order of magnitude higher in energy than previous measurements. The measured cross section is 1.30−0.19+0.211.30^{+0.21}_{-0.19} (stat.) −0.43+0.39^{+0.39}_{-0.43} (syst.) times the prediction of the Standard Model \cite{CooperSarkar:2011pa}, consistent with the expectation for charged and neutral current interactions. We do not observe a dramatic increase in the cross section, expected in some speculative models, including those invoking new compact dimensions \cite{AlvarezMuniz:2002ga} or the production of leptoquarks \cite{Romero:2009vu}.Comment: Preprint version of Nature paper 10.1038/nature2445

    Search for astrophysical sources of neutrinos using cascade events in IceCube

    Get PDF
    The IceCube neutrino observatory has established the existence of a flux of high-energy astrophysical neutrinos inconsistent with the expectation from atmospheric backgrounds at a significance greater than 5σ5\sigma. This flux has been observed in analyses of both track events from muon neutrino interactions and cascade events from interactions of all neutrino flavors. Searches for astrophysical neutrino sources have focused on track events due to the significantly better angular resolution of track reconstructions. To date, no such sources have been confirmed. Here we present the first search for astrophysical neutrino sources using cascades interacting in IceCube with deposited energies as small as 1 TeV. No significant clustering was observed in a selection of 263 cascades collected from May 2010 to May 2012. We show that compared to the classic approach using tracks, this statistically-independent search offers improved sensitivity to sources in the southern sky, especially if the emission is spatially extended or follows a soft energy spectrum. This enhancement is due to the low background from atmospheric neutrinos forming cascade events and the additional veto of atmospheric neutrinos at declinations â‰Č−30∘\lesssim-30^\circ.Comment: 14 pages, 9 figures, 1 tabl

    Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data

    Get PDF
    We report a quasi-differential upper limit on the extremely-high-energy (EHE) neutrino flux above 5×1065\times 10^{6} GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above 10610^{6} GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between 5×1065 \times 10^{6} and 5×10105 \times 10^{10} GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\ {\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}at at 10^9\ {\rm GeV}$. A significant part of the parameter-space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review

    Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1

    Get PDF
    In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. IceCube began releasing alerts for single high-energy (E>60E > 60 TeV) neutrino detections with sky localisation regions of order 1 deg radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016-2017 to search for any optical transients that may be related to the neutrinos. Typically 10-20 faint (m<22.5m < 22.5 mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of ∌\sim50 %), we found a SN PS16cgx, located at 10.0' from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at z = 0.2895. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak SiII absorption and a fairly normal rest-frame r-band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5σ\sigma limiting magnitude of m∌22m \sim 22 mag, between 1 day and 25 days after detection.Comment: 20 pages, 6 figures, accepted to A&
    • 

    corecore