112 research outputs found
Extended Smoothed Boundary Method for Solving Partial Differential Equations with General Boundary Conditions on Complex Boundaries
In this article, we describe an approach for solving partial differential
equations with general boundary conditions imposed on arbitrarily shaped
boundaries. A continuous function, the domain parameter, is used to modify the
original differential equations such that the equations are solved in the
region where a domain parameter takes a specified value while boundary
conditions are imposed on the region where the value of the domain parameter
varies smoothly across a short distance. The mathematical derivations are
straightforward and generically applicable to a wide variety of partial
differential equations. To demonstrate the general applicability of the
approach, we provide four examples herein: (1) the diffusion equation with both
Neumann and Dirichlet boundary conditions; (2) the diffusion equation with both
surface diffusion and reaction; (3) the mechanical equilibrium equation; and
(4) the equation for phase transformation with the presence of additional
boundaries. The solutions for several of these cases are validated against
corresponding analytical and semi-analytical solutions. The potential of the
approach is demonstrated with five applications: surface-reaction-diffusion
kinetics with a complex geometry, Kirkendall-effect-induced deformation,
thermal stress in a complex geometry, phase transformations affected by
substrate surfaces, and a self-propelled droplet.Comment: This document is the revised version of arXiv:0912.1288v
Self-assembly of ordered wurtzite/rock salt heterostructuresâA new view on phase separation in MgxZn1âxO
The self-assembled formation of ordered, vertically stacked rocksalt/wurtzite Mg x Zn 1âxO heterostructures by planar phase separation is shown. These heterostructures form quasi ânaturalâ two-dimensional hetero-interfaces between the different phases upon annealing of MgO-oversaturated wurtzite Mg x Zn 1âxO layers grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. The optical absorption spectra show a red shift simultaneous with the appearance of a cubic phase upon annealing at temperatures between 900â°C and 1000â°C. Transmission electron microscopy reveals that these effects are caused by phase separation leading to the formation of a vertically ordered rock salt/wurtzite heterostructures. To explain these observations, we suggest a phase separation epitaxy model that considers this process being initiated by the formation of a cubic (Mg,Zn)Al2O4 spinel layer at the interface to the sapphire substrate, acting as a planar seed for the epitaxial precipitation of rock salt Mg x Zn 1âxO. The equilibrium fraction x of magnesium in the resulting wurtzite (rock salt) layers is approximately 0.15 (0.85), independent of the MgO content of the as-grown layer and determined by the annealing temperature. This model is confirmed by photoluminescence analysis of the resulting layer systems after different annealing temperatures. In addition, we show that the thermal annealing process results in a significant reduction in the density of edge- and screw-type dislocations, providing the possibility to fabricate high quality templates for quasi-homoepitaxial growth
Evolution of the Surface Science of Catalysis from Single Crystals to Metal Nanoparticles under Pressure
Vacuum studies of metal single crystal surfaces using electron and molecular beam scattering revealed that the surface atoms relocate when the surface is clean (reconstruction) and when it is covered by adsorbates (adsorbate induced restructuring). It was also discovered that atomic steps and other low coordination surface sites are active for breaking chemical bonds (H-H, O=O, C-H, C=O and C-C) with high reaction probability. Investigations at high reactant pressures using sum frequency generation (SFG)--vibrational spectroscopy and high pressure scanning tunneling microscopy (HPSTM) revealed bond breaking at low reaction probability sites on the adsorbate-covered metal surface, and the need for adsorbate mobility for continued turnover. Since most catalysts (heterogeneous, enzyme and homogeneous) are nanoparticles, colloid synthesis methods were developed to produce monodispersed metal nanoparticles in the 1-10 nm range and controlled shapes to use them as new model catalyst systems in two-dimensional thin film form or deposited in mesoporous three-dimensional oxides. Studies of reaction selectivity in multipath reactions (hydrogenation of benzene, cyclohexene and crotonaldehyde) showed that reaction selectivity depends on both nanoparticle size and shape. The oxide-metal nanoparticle interface was found to be an important catalytic site because of the hot electron flow induced by exothermic reactions like carbon monoxide oxidation
Laser clad and HVOF sprayed Stellite 6 coating in chlorine rich environment with KCI at 700 °C
Laser clads and HVOF coatings from a stellite 6 alloy (CoâCrâWâC alloy) on 304 stainless steel substrates were exposed both bare and with KCl deposits in 500 ppm HCl with 5% O2 for 250 h at 700 C. SEM/EDX and PXRD analyses with Rietveld refinement were used for assessment of the attack and for analysis of the scales. The bare samples suffered from scale spallation and the scale was mostly composed of Cr2O3, CoCr2O4 and CoO, although due to dilution haematite (Fe2O3) was detected in the scale formed on the laser clad sample. A small amount of hydrated HCl was detected in bare samples. While the corrosion of the bare surfaces was limited to comparatively shallow depths and manifested by g and M7C3 carbide formation, the presence of KCl on the surface led to severe Cr depletion from the HVOF coating (to 1 wt%). Both inward and outward diffusion of elements occurred in the HVOF coating resulting in Kirdendall voids at the coatingâsteel interface. The laser clad sample performed significantly better in conditions of the KCl deposit-induced corrosion. In addition to the oxides, CoCl2 was detected in the HVOF sample and K3CrO4 was detected in the laser clad sample. Thermodynamic calculations and kinetic simulations were carried out to interpret the oxidation and diffusion behaviours of coatings
Migration as a form of workforce attrition: a nine-country study of pharmacists
Background
There is a lack of evidence to inform policy development on the reasons why health professionals migrate. Few studies have sought to empirically determine factors influencing the intention to migrate and none have explored the relationship between factors. This paper reports on the first international attempt to investigate the migration intentions of pharmacy students and identify migration factors and their relationships.
Methods
Responses were gathered from 791 final-year pharmacy students from nine countries: Australia, Bangladesh, Croatia, Egypt, Portugal, Nepal, Singapore, Slovenia and Zimbabwe. Data were analysed by means of Principal Components Analysis (PCA) and two-step cluster analysis to determine the relationships between factors influencing migration and the characteristics of subpopulations most likely and least likely to migrate.
Results
Results showed a significant difference in attitudes towards the professional and sociopolitical environment of the home country and perceptions of opportunities abroad between those who have no intention of migrating and those who intend to migrate on a long-term basis. Attitudes of students planning short-term migration were not significantly different from those of students who did not intend to migrate. These attitudes, together with gender, knowledge of other migrant pharmacists and past experiences abroad, are associated with an increased propensity for migration.
Conclusion
Given the influence of the country context and environment on migration intentions, research and policy should frame the issue of migration in the context of the wider human resource agenda, thus viewing migration as one form of attrition and a symptom of other root causes. Remuneration is not an independent stand-alone factor influencing migration intentions and cannot be decoupled from professional development factors. Comprehensive human resource policy development that takes into account the issues of both remuneration and professional development are necessary to encourage retention
Hollow Sodium Tungsten Bronze (Na0.15WO3) Nanospheres: Preparation, Characterization, and Their Adsorption Properties
We report herein a facile method for the preparation of sodium tungsten bronzes hollow nanospheres using hydrogen gas bubbles as reactant for chemical reduction of tungstate to tungsten and as template for the formation of hollow nanospheres at the same time. The chemical composition and the crystalline state of the as-prepared hollow Na0.15WO3nanospheres were characterized complementarily, and the hollow structure formation mechanism was proposed. The hollow Na0.15WO3nanospheres showed large BrunauerâEmmentâTeller specific area (33.8 m2 gâ1), strong resistance to acids, and excellent ability to remove organic molecules such as dye and proteins from aqueous solutions. These illustrate that the hollow nanospheres of Na0.15WO3should be a useful adsorbent
- âŠ