52 research outputs found
Searching for Globally Optimal Functional Forms for Inter-Atomic Potentials Using Parallel Tempering and Genetic Programming
We develop a Genetic Programming-based methodology that enables discovery of
novel functional forms for classical inter-atomic force-fields, used in
molecular dynamics simulations. Unlike previous efforts in the field, that fit
only the parameters to the fixed functional forms, we instead use a novel
algorithm to search the space of many possible functional forms. While a
follow-on practical procedure will use experimental and {\it ab inito} data to
find an optimal functional form for a forcefield, we first validate the
approach using a manufactured solution. This validation has the advantage of a
well-defined metric of success. We manufactured a training set of atomic
coordinate data with an associated set of global energies using the well-known
Lennard-Jones inter-atomic potential. We performed an automatic functional form
fitting procedure starting with a population of random functions, using a
genetic programming functional formulation, and a parallel tempering
Metropolis-based optimization algorithm. Our massively-parallel method
independently discovered the Lennard-Jones function after searching for several
hours on 100 processors and covering a miniscule portion of the configuration
space. We find that the method is suitable for unsupervised discovery of
functional forms for inter-atomic potentials/force-fields. We also find that
our parallel tempering Metropolis-based approach significantly improves the
optimization convergence time, and takes good advantage of the parallel cluster
architecture
Recommended from our members
Analysis of Price Equilibriums in the Aspen Economic Model under Various Purchasing Methods
Aspen, a powerful economic modeling tool that uses agent modeling and genetic algorithms, can accurately simulate the economy. In it, individuals are hired by firms to produce a good that households then purchase. The firms decide what price to charge for this good, and based on that price, the households determine which firm to purchase from. We will attempt to discover the Nash Equilibrium price found in this model under two different methods of determining how many orders each firm receives. To keep it simple, we will assume there are only two firms in our model, and that these firms compete for the sale of one identical good
Recommended from our members
R&D for computational cognitive and social models : foundations for model evaluation through verification and validation (final LDRD report).
Sandia National Laboratories is investing in projects that aim to develop computational modeling and simulation applications that explore human cognitive and social phenomena. While some of these modeling and simulation projects are explicitly research oriented, others are intended to support or provide insight for people involved in high consequence decision-making. This raises the issue of how to evaluate computational modeling and simulation applications in both research and applied settings where human behavior is the focus of the model: when is a simulation 'good enough' for the goals its designers want to achieve? In this report, we discuss two years' worth of review and assessment of the ASC program's approach to computational model verification and validation, uncertainty quantification, and decision making. We present a framework that extends the principles of the ASC approach into the area of computational social and cognitive modeling and simulation. In doing so, we argue that the potential for evaluation is a function of how the modeling and simulation software will be used in a particular setting. In making this argument, we move from strict, engineering and physics oriented approaches to V&V to a broader project of model evaluation, which asserts that the systematic, rigorous, and transparent accumulation of evidence about a model's performance under conditions of uncertainty is a reasonable and necessary goal for model evaluation, regardless of discipline. How to achieve the accumulation of evidence in areas outside physics and engineering is a significant research challenge, but one that requires addressing as modeling and simulation tools move out of research laboratories and into the hands of decision makers. This report provides an assessment of our thinking on ASC Verification and Validation, and argues for further extending V&V research in the physical and engineering sciences toward a broader program of model evaluation in situations of high consequence decision-making
On the statistical mechanics of prion diseases
We simulate a two-dimensional, lattice based, protein-level statistical
mechanical model for prion diseases (e.g., Mad Cow disease) with concommitant
prion protein misfolding and aggregation. Our simulations lead us to the
hypothesis that the observed broad incubation time distribution in
epidemiological data reflect fluctuation dominated growth seeded by a few
nanometer scale aggregates, while much narrower incubation time distributions
for innoculated lab animals arise from statistical self averaging. We model
`species barriers' to prion infection and assess a related treatment protocol.Comment: 5 Pages, 3 eps figures (submitted to Physical Review Letters
Towards a matrix mechanics framework for dynamic protein network
Protein–protein interaction networks are currently visualized by software generated interaction webs based upon static experimental data. Current state is limited to static, mostly non-compartmental network and non time resolved protein interactions. A satisfactory mathematical foundation for particle interactions within a viscous liquid state (situation within the cytoplasm) does not exist nor do current computer programs enable building dynamic interaction networks for time resolved interactions. Building mathematical foundation for intracellular protein interactions can be achieved in two increments (a) trigger and capture the dynamic molecular changes for a select subset of proteins using several model systems and high throughput time resolved proteomics and, (b) use this information to build the mathematical foundation and computational algorithm for a compartmentalized and dynamic protein interaction network. Such a foundation is expected to provide benefit in at least two spheres: (a) understanding physiology enabling explanation of phenomenon such as incomplete penetrance in genetic disorders and (b) enabling several fold increase in biopharmaceutical production using impure starting materials
Multi-Scale Stochastic Simulation of Diffusion-Coupled Agents and Its Application to Cell Culture Simulation
Many biological systems consist of multiple cells that interact by secretion and binding of diffusing molecules, thus coordinating responses across cells. Techniques for simulating systems coupling extracellular and intracellular processes are very limited. Here we present an efficient method to stochastically simulate diffusion processes, which at the same time allows synchronization between internal and external cellular conditions through a modification of Gillespie's chemical reaction algorithm. Individual cells are simulated as independent agents, and each cell accurately reacts to changes in its local environment affected by diffusing molecules. Such a simulation provides time-scale separation between the intra-cellular and extra-cellular processes. We use our methodology to study how human monocyte-derived dendritic cells alert neighboring cells about viral infection using diffusing interferon molecules. A subpopulation of the infected cells reacts early to the infection and secretes interferon into the extra-cellular medium, which helps activate other cells. Findings predicted by our simulation and confirmed by experimental results suggest that the early activation is largely independent of the fraction of infected cells and is thus both sensitive and robust. The concordance with the experimental results supports the value of our method for overcoming the challenges of accurately simulating multiscale biological signaling systems
Investigating the conformational stability of prion strains through a kinetic replication model
Prion proteins are known to misfold into a range of different aggregated forms, showing different phenotypic and pathological states. Understanding strain specificities is an important problem in the field of prion disease. Little is known about which PrP(Sc) structural properties and molecular mechanisms determine prion replication, disease progression and strain phenotype. The aim of this work is to investigate, through a mathematical model, how the structural stability of different aggregated forms can influence the kinetics of prion replication. The model-based results suggest that prion strains with different conformational stability undergoing in vivo replication are characterizable in primis by means of different rates of breakage. A further role seems to be played by the aggregation rate (i.e. the rate at which a prion fibril grows). The kinetic variability introduced in the model by these two parameters allows us to reproduce the different characteristic features of the various strains (e.g., fibrils' mean length) and is coherent with all experimental observations concerning strain-specific behavior
Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. © 2014 Hogg et al
- …