1,082 research outputs found

    Probing the formation history of the nuclear star cluster at the Galactic Centre with millisecond pulsars

    Get PDF
    The origin of the Nuclear Star Cluster in the centre of our Galaxy is still unknown. One possibility is that it formed after the disruption of stellar clusters that spiralled into the Galactic Centre due to dynamical friction. We trace the formation of the Nuclear Star Cluster around the central black hole, using state-of-the-art N-body simulations, and follow the dynamics of the neutron stars born in the clusters. We then estimate the number of Millisecond Pulsars (MSPs) that are released in the Nuclear Star Cluster, during its formation. The assembly and tidal dismemberment of globular clusters lead to a population of MSPs distributed over a radius of about 20 pc, with a peak near 3 pc. No clustering is found on the sub-parsec scale. We simulate the detectability of this population with future radio telescopes like the MeerKAT radio telescope and SKA1, and find that about of order ten MSPs can be observed over this large volume, with a paucity of MSPs within the central parsec. This helps discriminating this scenario from the in-situ formation model for the Nuclear Star Cluster that would predict an over abundance of MSPs closer to the black hole. We then discuss the potential contribution of our MSP population to the gamma-ray excess at the Galactic Centre.Comment: 11 pages, 8 figures, accepted for publication in MNRA

    Dynamics and Predictability of Hurricane Humberto (2007) Revealed from Ensemble Analysis and Forecasting

    Get PDF
    This study uses short-range ensemble forecasts initialized with an Ensemble-Kalman filter to study the dynamics and predictability of Hurricane Humberto, which made landfall along the Texas coast in 2007. Statistical correlation is used to determine why some ensemble members strengthen the incipient low into a hurricane and others do not. It is found that deep moisture and high convective available potential energy (CAPE) are two of the most important factors for the genesis of Humberto. Variations in CAPE result in as much difference (ensemble spread) in the final hurricane intensity as do variations in deep moisture. CAPE differences here are related to the interaction between the cyclone and a nearby front, which tends to stabilize the lower troposphere in the vicinity of the circulation center. This subsequently weakens convection and slows genesis. Eventually the wind-induced surface heat exchange mechanism and differences in landfall time result in even larger ensemble spread.

    Glycerol confined in zeolitic imidazolate frameworks: The temperature-dependent cooperativity length scale of glassy freezing

    Get PDF
    In the present work, we employ broadband dielectric spectroscopy to study the molecular dynamics of the prototypical glass former glycerol confined in two microporous zeolitic imidazolate frameworks (ZIF-8 and ZIF-11) with well-defined pore diameters of 1.16 and 1.46 nm, respectively. The spectra reveal information on the modified alpha relaxation of the confined supercooled liquid, whose temperature dependence exhibits clear deviations from the typical super-Arrhenius temperature dependence of the bulk material, depending on temperature and pore size. This allows assigning well-defined cooperativity length scales of molecular motion to certain temperatures above the glass transition. We relate these and previous results on glycerol confined in other host systems to the temperature-dependent length scale deduced from nonlinear dielectric measurements. The combined experimental data can be consistently described by a critical divergence of this correlation length as expected within theoretical approaches assuming that the glass transition is due to an underlying phase transition.Comment: 14 pages, 5 figures + Supplemental Material (4 pages, 6 figures). Final version as accepted for publicatio

    The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    Get PDF
    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core

    The Dynamics and Predictability of Tropical Cyclones

    Get PDF
    Through methodology unique for tropical cyclones in peer-reviewed literature, this study explores how the dynamics of moist convection affects the predictability of tropical cyclogenesis. Mesoscale models are used to perform short-range ensemble forecasts of a non-developing disturbance in 2004 and Hurricane Humberto in 2007; both of these cases were highly unpredictable. Taking advantage of discrepancies between ensemble members in short-range ensemble forecasts, statistical correlation is used to pinpoint sources of error in forecasts of tropical cyclone formation and intensification. Despite significant differences in methodology, storm environment and development, it is found in both situations that high convective instability (CAPE) and mid-level moisture are two of the most important factors for genesis. In the gulf low, differences in CAPE are related to variance in quasi-geostrophic lift, and in Humberto the differences are related to the degree of interaction between the cyclone and a nearby front. Regardless of the source of CAPE variance, higher CAPE and mid-level moisture combine to yield more active initial convection and more numerous and strong vortical hot towers (VHTs), which incrementally contribute to a stronger vortex. In both cases, strength differences between ensemble members are further amplified by differences in convection that are related to oceanic heat fluxes. Eventually the WISHE mechanism results in even larger ensemble spread, and in the case of Humberto, uncertainty related to the time of landfall drives spread even higher. It is also shown that initial condition differences much smaller than current analysis error can ultimately control whether or not a tropical cyclone forms. Furthermore, even smaller differences govern how the initial vortex is built. Differences in maximum winds and/or vorticity vary nonlinearly with initial condition differences and depend on the timing and intensity of small mesoscale features such as VHTs and cold pools. Finally, the strong sensitivity to initial condition differences in both cases exemplifies the inherent uncertainties in hurricane intensity prediction. This study illustrates the need for implementing advanced data analysis schemes and ensemble prediction systems to provide more accurate and event-dependent probabilistic forecasts

    Importance of reorientational dynamics for the charge transport in ionic liquids

    Get PDF
    Most ionic liquids contain at least one rather complex ion species exhibiting a dipolar moment. In the present work, we provide a thorough evaluation of broadband dielectric spectra of 12 ionic liquids taking into account the often neglected reorientational dynamics of these ions. We confirm that this dynamics leads to a clear relaxational signature in the spectra, a fact that so far only was considered in few previous works. The obtained reorientational relaxation times are well consistent with earlier inelastic light-scattering and high-frequency dielectric investigations. Evaluating our dielectric spectra in terms of reorientational motions reveals a close coupling of the ion-rotation dynamics to the ionic charge transport in a broad temperature range from the low-viscosity liquid above room temperature deep into the high-viscosity supercooled state close to Tg. This coupling does not seem to be mediated by the viscosity but probably is of more direct nature, pointing to a revolving-door mechanism as also considered for plastic-crystalline ionic conductors. Our results show that the reorientational motion of the dipolar ions plays a significant and so far widely overlooked role for the ionic charge transport in ionic liquids.Comment: 10 pages, 9 figures. Revised version according to suggestions of referee
    • …
    corecore