37 research outputs found

    Bodily tides near spin-orbit resonances

    Full text link
    Spin-orbit coupling can be described in two approaches. The method known as "the MacDonald torque" is often combined with an assumption that the quality factor Q is frequency-independent. This makes the method inconsistent, because the MacDonald theory tacitly fixes the rheology by making Q scale as the inverse tidal frequency. Spin-orbit coupling can be treated also in an approach called "the Darwin torque". While this theory is general enough to accommodate an arbitrary frequency-dependence of Q, this advantage has not yet been exploited in the literature, where Q is assumed constant or is set to scale as inverse tidal frequency, the latter assertion making the Darwin torque equivalent to a corrected version of the MacDonald torque. However neither a constant nor an inverse-frequency Q reflect the properties of realistic mantles and crusts, because the actual frequency-dependence is more complex. Hence the necessity to enrich the theory of spin-orbit interaction with the right frequency-dependence. We accomplish this programme for the Darwin-torque-based model near resonances. We derive the frequency-dependence of the tidal torque from the first principles, i.e., from the expression for the mantle's compliance in the time domain. We also explain that the tidal torque includes not only the secular part, but also an oscillating part. We demonstrate that the lmpq term of the Darwin-Kaula expansion for the tidal torque smoothly goes through zero, when the secondary traverses the lmpq resonance (e.g., the principal tidal torque smoothly goes through nil as the secondary crosses the synchronous orbit). We also offer a possible explanation for the unexpected frequency-dependence of the tidal dissipation rate in the Moon, discovered by LLR

    Modeling Three‐Dimensional Wave Propagation in Anelastic Models With Surface Topography by the Optimal Strong Stability Preserving Runge‐Kutta Method

    No full text
    Accurate and efficient forward modeling methods are important for simulation of seismic wave propagation in 3D realistic Earth models and crucial for high-resolution full waveform inversion. In the presence of attenuation, wavefield simulation could be inaccurate or unstable over time if not well treated, indicating the importance of the implementation of a strong stability preserving time discretization scheme. In this study, to solve the anelastic wave equation, we choose the optimal strong stability preserving Runge-Kutta (SSPRK) method for the temporal discretization and apply the fourth-order MacCormack scheme for the spatial discretization. We approximate the rheological behaviors of the Earth by using the generalized Maxwell body model and use an optimization procedure to calculate the anelastic coefficients determined by the Q(ω) law. This optimization constrains positivity of the anelastic coefficients and ensures the decay of total energy with time, resulting in a stable viscoelastic system even in the presence of strong attenuation. Moreover, we perform theoretical and numerical analyses of the SSPRK method, including the stability criteria and the numerical dispersion. Compared with the traditional fourth-order Runge-Kutta method, the SSPRK has a larger stability condition number and can better suppress numerical dispersion. We use the complex-frequency-shifted perfectly matched layer for the absorbing boundary conditions based on the auxiliary difference equation and employ the traction image method for the free-surface boundary condition on curvilinear grids representing the surface topography. Finally, we perform several numerical experiments to demonstrate the accuracy of our anelastic modeling in the presence of surface topography
    corecore