4,978 research outputs found
Astrophysically robust systematics removal using variational inference: application to the first month of Kepler data
Space-based transit search missions such as Kepler are collecting large
numbers of stellar light curves of unprecedented photometric precision and time
coverage. However, before this scientific goldmine can be exploited fully, the
data must be cleaned of instrumental artefacts. We present a new method to
correct common-mode systematics in large ensembles of very high precision light
curves. It is based on a Bayesian linear basis model and uses shrinkage priors
for robustness, variational inference for speed, and a de-noising step based on
empirical mode decomposition to prevent the introduction of spurious noise into
the corrected light curves. After demonstrating the performance of our method
on a synthetic dataset, we apply it to the first month of Kepler data. We
compare the results, which are publicly available, to the output of the Kepler
pipeline's pre-search data conditioning, and show that the two generally give
similar results, but the light curves corrected using our approach have lower
scatter, on average, on both long and short timescales. We finish by discussing
some limitations of our method and outlining some avenues for further
development. The trend-corrected data produced by our approach are publicly
available.Comment: 15 pages, 13 figures, accepted for publication in MNRA
Efficient state-space inference of periodic latent force models
Latent force models (LFM) are principled approaches to incorporating solutions to differen-tial equations within non-parametric inference methods. Unfortunately, the developmentand application of LFMs can be inhibited by their computational cost, especially whenclosed-form solutions for the LFM are unavailable, as is the case in many real world prob-lems where these latent forces exhibit periodic behaviour. Given this, we develop a newsparse representation of LFMs which considerably improves their computational efficiency,as well as broadening their applicability, in a principled way, to domains with periodic ornear periodic latent forces. Our approach uses a linear basis model to approximate onegenerative model for each periodic force. We assume that the latent forces are generatedfrom Gaussian process priors and develop a linear basis model which fully expresses thesepriors. We apply our approach to model the thermal dynamics of domestic buildings andshow that it is effective at predicting day-ahead temperatures within the homes. We alsoapply our approach within queueing theory in which quasi-periodic arrival rates are mod-elled as latent forces. In both cases, we demonstrate that our approach can be implemented efficiently using state-space methods which encode the linear dynamic systems via LFMs.Further, we show that state estimates obtained using periodic latent force models can re-duce the root mean squared error to 17% of that from non-periodic models and 27% of thenearest rival approach which is the resonator model (S ̈arkk ̈a et al., 2012; Hartikainen et al.,2012.
Monitoring young associations and open clusters with Kepler in two-wheel mode
We outline a proposal to use the Kepler spacecraft in two-wheel mode to
monitor a handful of young associations and open clusters, for a few weeks
each. Judging from the experience of similar projects using ground-based
telescopes and the CoRoT spacecraft, this program would transform our
understanding of early stellar evolution through the study of pulsations,
rotation, activity, the detection and characterisation of eclipsing binaries,
and the possible detection of transiting exoplanets. Importantly, Kepler's wide
field-of-view would enable key spatially extended, nearby regions to be
monitored in their entirety for the first time, and the proposed observations
would exploit unique synergies with the GAIA ESO spectroscopic survey and, in
the longer term, the GAIA mission itself. We also outline possible strategies
for optimising the photometric performance of Kepler in two-wheel mode by
modelling pixel sensitivity variations and other systematics.Comment: 10 pages, 6 figures, white paper submitted in response to NASA call
for community input for alternative science investigations for the Kepler
spacecraf
Modeling How Shoreline Shape Affects Tides and How Underwater Structures Attenuate Wave Energy: An Example of the Georgia Bight
Two demonstrations are presented that lead students to a greater understanding of ocean tides and wave energy, using the unique tidal range and wave action of the Georgia Bight as an example. The goal is to explain how varying geological features in coastal regions create different wave energies and how the shape of a coastline affects the magnitude of the tidal range. These mechanisms were demonstrated to students in an upper-division college course prior to attending a field trip, in which they would evaluate real-world examples of coastlines with high and low wave energy, and regions with large and small tidal magnitudes. Here, the method of applied learning proved to be successful in guiding students to better comprehension of concepts when relating demonstrations to firsthand observations in the field
Characterisation of Au nanorod dynamics in optical tweezers via localised surface plasmon resonance spectroscopy
© 2014 SPIE. We present a study of the trapping properties of Au nanorods of different aspect ratios in an optical tweezers and comparison with other characterization techniques like transmission electron microscope (TEM) imaging and dynamic light scattering (DLS). This study provides information on the dynamics and orientation of Au nanorods inside an optical trap based on a time study of their localised surface plasmon resonance (LSPR) features. The results indicate that the orientation of the Au nanorods trapped in our optical tweezers varies with time and LSPR spectra can provide information on the angle of the nanorod with respect to the direction of propagation of the trapping laser
Dynamical instabilities of Bose-Einstein condensates at the band-edge in one-dimensional optical lattices
We report on experiments that demonstrate dynamical instability in a
Bose-Einstein condensate at the band-edge of a one-dimensional optical lattice.
The instability manifests as rapid depletion of the condensate and conversion
to a thermal cloud. We consider the collisional processes that can occur in
such a system, and perform numerical modeling of the experiments using both a
mean-field and beyond mean-field approach. We compare our numerical results to
the experimental data, and find that the Gross-Pitaevskii equation is not able
to describe this experiment. Our beyond mean-field approach, known as the
truncated Wigner method, allows us to make quantitative predictions for the
processes of parametric growth and thermalization that are observed in the
laboratory, and we find good agreement with the experimental results.Comment: v2: Added several reference
Anomalous Diffusion at Edge and Core of a Magnetized Cold Plasma
Progress in the theory of anomalous diffusion in weakly turbulent cold
magnetized plasmas is explained. Several proposed models advanced in the
literature are discussed. Emphasis is put on a new proposed mechanism for
anomalous diffusion transport mechanism based on the coupled action of
conductive walls (excluding electrodes) bounding the plasma drain current (edge
diffusion) together with the magnetic field flux "cutting" the area traced by
the charged particles in their orbital motion. The same reasoning is shown to
apply to the plasma core anomalous diffusion. The proposed mechanism is
expected to be valid in regimes when plasma diffusion scales as Bohm diffusion
and at high , when collisions are of secondary importance.Comment: 9 pages, 4 figure
- …