51,251 research outputs found
Different Power-law Indices in the Frequency Distributions of Flares with and without Coronal Mass Ejections
We investigated the frequency distributions of flares with and without
coronal mass ejections (CMEs) as a function of flare parameters (peak flux,
fluence, and duration of soft X-ray flares). We used CMEs observed by the Large
Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric
Observatory (SOHO) mission and soft X-ray flares (C3.2 and above) observed by
the GOES satellites during 1996 to 2005. We found that the distributions obey a
power-law of the form: dN/dX~X^-alpha, where X is a flare parameter and dN is
the number of events recorded within the interval [X, X+dX]. For the flares
with (without) CMEs, we obtained the power-law index alpha=1.98+-0.05
(alpha=2.52+-0.03) for the peak flux, alpha=1.79+-0.05 (alpha=2.47+-0.11) for
the fluence, and alpha=2.49+-0.11 (alpha=3.22+-0.15) for the duration. The
power-law indices for flares without CMEs are steeper than those for flares
with CMEs. The larger power-law index for flares without CMEs supports the
possibility that nanoflares contribute to coronal heating.Comment: 4 pages, 2 figures embedded, accepted for publication in ApJ
Workshop on the Polar Regions of Mars: Geology, Glaciology, and Climate History, part 1
Papers and abstract of papers presented at the workshop are presented. Some representative titles are as follows: Glaciation in Elysium; Orbital, rotational, and climatic interactions; Water on Mars; Rheology of water-silicate mixtures at low temperatures; Evolution of the Martian atmosphere (the role of polar caps); Is CO2 ice permanent; Dust transport into Martian polar latitudes; Mars observer radio science (MORS) observations in polar regions; and Wind transport near the poles of Mars (timescales of changes in deposition and erosion)
Comprehensive Observations of a Solar Minimum CME with STEREO
We perform the first kinematic analysis of a CME observed by both imaging and
in situ instruments on board STEREO, namely the SECCHI, PLASTIC, and IMPACT
experiments. Launched on 2008 February 4, the CME is tracked continuously from
initiation to 1 AU using the SECCHI imagers on both STEREO spacecraft, and is
then detected by the PLASTIC and IMPACT particle and field detectors on board
STEREO-B. The CME is also detected in situ by ACE and SOHO/CELIAS at Earth's L1
Lagrangian point. The CME hits STEREO-B, ACE, and SOHO on 2008 February 7, but
misses STEREO-A entirely. This event provides a good example of just how
different the same event can look when viewed from different perspectives. We
also demonstrate many ways in which the comprehensive and continuous coverage
of this CME by STEREO improves confidence in our assessment of its kinematic
behavior, with potential ramifications for space weather forecasting. The
observations provide several lines of evidence in favor of the observable part
of the CME being narrow in angular extent, a determination crucial for deciding
how best to convert observed CME elongation angles from Sun-center to actual
Sun-center distances.Comment: 27 pages, 10 figures, AASTEX v5.2, accepted by Ap
Laser-only adaptive optics achieves significant image quality gains compared to seeing-limited observations over the entire sky
Adaptive optics laser guide star systems perform atmospheric correction of
stellar wavefronts in two parts: stellar tip-tilt and high-spatial-order
laser-correction. The requirement of a sufficiently bright guide star in the
field-of-view to correct tip-tilt limits sky coverage. Here we show an
improvement to effective seeing without the need for nearby bright stars,
enabling full sky coverage by performing only laser-assisted wavefront
correction. We used Robo-AO, the first robotic AO system, to comprehensively
demonstrate this laser-only correction. We analyze observations from four years
of efficient robotic operation covering 15,000 targets and 42,000 observations,
each realizing different seeing conditions. Using an autoguider (or a
post-processing software equivalent) and the laser to improve effective seeing
independent of the brightness of a target, Robo-AO observations show a 39+/-19%
improvement to effective FWHM, without any tip-tilt correction. We also
demonstrate that 50% encircled-energy performance without tip-tilt correction
remains comparable to diffraction-limited, standard Robo-AO performance.
Faint-target science programs primarily limited by 50% encircled-energy (e.g.
those employing integral field spectrographs placed behind the AO system) may
see significant benefits to sky coverage from employing laser-only AO.Comment: Accepted for publication in The Astronomical Journal. 7 pages, 6
figure
- …
