141 research outputs found
Absolute accuracy in membrane-based ac nanocalorimetry
To achieve accurate results in nanocalorimetry a detailed analysis and
understanding of the behavior of the calorimetric system is required. There are
especially two system-related aspects that should be taken in consideration:
the properties of the empty cell and the effect of the thermal link between
sample and cell. Here we study these two aspects for a membrane-based system
where heater and thermometer are both in good contact with each other and the
center of the membrane. Practical, analytical expressions for describing the
frequency dependence of heat capacity, thermal conductance, and temperature
oscillation of the system are formulated and compared with measurements and
numerical simulations. We finally discuss the experimental conditions for an
optimal working frequency, where high resolution and good absolute accuracy are
combined
Anomalous Hall effect in NiPt thin films
We study Hall effect in sputtered NixPt1-x thin films with different Ni
concentrations. Temperature, magnetic field and angular dependencies are
analyzed and the phase diagram of NiPt thin films is obtained. It is found that
films with sub-critical Ni concentration exhibit cluster-glass behavior at low
temperatures with a perpendicular magnetic anisotropy below the freezing
temperature. Films with over-critical Ni concentration are ferromagnetic with
parallel anisotropy. At the critical concentration the state of the film is
strongly frustrated. Such films demonstrate canted magnetization with the easy
axis rotating as a function of temperature. The magnetism appears via
consecutive paramagnetic - cluster glass - ferromagnetic transitions, rather
than a single second-order phase transition. But most remarkably, the
extraordinary Hall effect changes sign at the critical concentration. We
suggest that this is associated with a reconstruction of the electronic
structure of the alloy at the normal metal - ferromagnet quantum phase
transition.Comment: 12 pages, 17 figure
Comment on `Strong Vortex Liquid Correlation' from Multiterminal Measurements on Untwinned YBaCuO Single Crystals'
A.Rydh and \"O.Rapp [Phys. Rev. Lett. {\bf 86}, 1873 (2001).] claim that the
vortex liquid in untwinned YBaCuO crystals is correlated
above the melting transition, in striking contrast to previous work [D.L\'opez
{\it et al.}, Phys. Rev. Lett. {\bf 76}, 4034 (1996).]. In this Comment we
present new measurements using the same experimental technique on twinned and
untwinned YBaCuO crystals with similar overall
characteristics as those reported by Rydh and Rapp . The comparison of the
vortex correlation response in both cases indicates that the central conclusion
of their work is not correct. Our results reconfirm the work by L\'opez {\it et
al.} and points on the origin of the misinterpretation in the work of Rydh and
Rapp.Comment: comment on A.Rydh and \"O.Rapp, Phys. Rev. Lett. {\bf 86}, 1873
(2001). accepted in Phys. Rev. Let
Observation of superluminal geometrical resonances in Bi2Sr2CaCu2O8+x intrinsic Josephson junctions
We study Fiske steps in small Bi2Sr2CaCu2O8+x mesa structures, containing
only few stacked intrinsic Josephson junctions. Careful alignment of magnetic
field prevents penetration of Abrikosov vortices and facilitates observation of
a large variety of high quality geometrical resonances, including superluminal
with velocities larger than the slowest velocity of electromagnetic waves. A
small number of junctions limits the number of resonant modes and allows
accurate identification of modes and velocities. It is shown that superluminal
geometrical resonances can be excited by subluminal fluxon motion and that
flux-flow itself becomes superluminal at high magnetic fields. We argue that
observation of high-quality superluminal geometrical resonances is crucial for
realization of the coherent flux-flow oscillator in the THz frequency range
- …