4,027 research outputs found

    Development of crack on composite detection sensor using magnetic induction concept

    Get PDF
    A crack detection is very important to control the quality of the composite itself that been widely used in industries. There are quite a numbers of techniques which are used to detect the crack such as visual inspection, radiography, ultrasonic, eddy current magnetic particle, and penetrant testing. In this paper, it focuses on designing and implementing the system to detect a crack on the composite material using magnetic induction concept. At the early stage, the miniature of composite detection sensor using magnetic induction concept is designed using Comsol Multiphysics software to see the current induced from the system. The current value from the sensor is measured based on magnetic induction concept. A complete design of a system then is designed which include the sensor design, the main controller unit design and Bluetooth electronic application. The experiment results show that the magnetic induction concept can be used to detect crack by changing the value of current. When crack occurs the value of current will decrease due to the changes of magnetic induction

    MPEG-4 video transmission using distributed TDMA MAC protocol over IEEE 802.15.4 wireless technology

    Get PDF
    The issues of green technology nowadays give an inspiration to the researcher to make all the future design to be energy efficient. Medium Access Control (MAC) layer is the most effective layer to provide energy efficient due to its ability to control the physical radio directly. One of the important applications in the future is a video transmission that can be transmitted with low-cost and low power consumption. MPEG-4 is one of the international standards for moving video. MPEG-4 provide better compression and primarily design at low bit rate communication. In order to achieve good quality for video application, the design at MAC layer must be strong. Therefore, to increase the performance of the MPEG-4 in IEEE 802.15.4, in this paper we propose a cross layer design between MAC layer and Application layer. A priority queue will be implemented at MAC scheduling depends on the level of frame important in MPEG-4 format frame. A distributed Time division Multiple Access (TDMA) will be used for MAC protocol to provide reliable data transmission for high priority frame

    Development of Foreign Material Detection in Food Sensor Using Electrical Resistance Technique

    Get PDF
    Food inspection has been a serious matter in the food industry as the contamination by foreign materials such as metals, bone, plastics and glass in food plays a major impact on the industry. In spite of a great deal of effort to prevent mixing foreign bodies in food materials, food manufacturers have still not been able to detect them. Electrical Resistance Sensor to detect the foreign material in food detection sensor is constructed and presented in this work. This project focuses on how to design and implement the system to detect and distinguish between food and foreign material using resistance concept. The electrode plate of Electrical Resistance Sensor (ERS) is designed using COMSOL Multiphysics Software to see the electric field and contour of the electric potential of the system. The resistance value from the sensor is measured based on the AC Circuit concept. The alternating current from the sensor flows to the charge detector circuit providing the voltage corresponding to the resistance between the electrode pair. The voltage from the charge detector circuit has been amplified by the amplifier circuit to obtained DC output from an AC input signal. The voltage form circuit has been converted from the analog to digital signal using Bluetooth Electronics Application via Arduino Uno through HC-05 Bluetooth module. The Bluetooth Electronics Application is used as a graphical user interface (GUI) to display the condition of the material tested including food and foreign material to a smartphone.  The experiment results show that the electrical resistance sensor are able to detect the foreign material in food by changes of the resistance value. If the food was detected with the foreign material (non-conductive), the value of resistance will decrease due to the flow of electric current

    A Novel Approach to Stuttered Speech Correction

    Get PDF
    Stuttered speech is a dysfluency rich speech, more prevalent in males than females. It has been associated with insufficient air pressure or poor articulation, even though the root causes are more complex. The primary features include prolonged speech and repetitive speech, while some of its secondary features include, anxiety, fear, and shame. This study used LPC analysis and synthesis algorithms to reconstruct the stuttered speech. The results were evaluated using cepstral distance, Itakura-Saito distance, mean square error, and likelihood ratio. These measures implied perfect speech reconstruction quality. ASR was used for further testing, and the results showed that all the reconstructed speech samples were perfectly recognized while only three samples of the original speech were perfectly recognized

    An analysis of safety perception in the street of Kuala Lumpur

    Get PDF
    Urban safety is an important focus area of Sustainable Development Goals (SDG) and New Urban Agenda (NUA) were developed. Safe City Programme were introduced in Malaysia in 2004 in parallel with DG 11 that aiming on making cities inclusive, safe, resilient and sustainable for the citizens. Safe street contributes to a better quality of life and have been identified as important factor in contributing to a walkable and sustainable city. A safe, vibrant life initiate an active public realm where streets re seen as urban spaces. Pedestrian are encourage to walk when the environment is safe and accessible. Safety perception is the main focus of this research where case study approach is adopted. A mixed method was designed in order to fully evaluate and assess the phenomenon. 150 questionnaires were distributed randomly among pedestrian at Jalan Tuanku Abdul Rahman, Kuala Lumpur and structured observation were performed. Triangulation of both statistical and thematic analysis were conducted and findings from this study revealed that both physical and social elements does contribute to safety perception. Findings demonstrate that as far as sustainable city is concerned, all aspect are crucial and need to be addressed. The aim of this paper is to assess the characteristic of a street in contributing to safety perception

    Spectroscopic properties, molecular structure, anticancer and antimicrobial evaluation of some new moxifloxacin metal complexes in the presence of 1,10-phenanthroline

    Get PDF
    New series of Y(III), Zr(IV), Pd(II), La(III) and U(VI) complexes with moxifloxacin (MOX) and 1,10-phenanthroline (Phen) were synthesized and the chelation behaviours have been investigated. The complexes were characterized using elemental analysis, molar conductance, magnetic properties, thermal studies and various spectral techniques such as FT-IR, UV-Vis, 1H NMR and mass spectra. The kinetic and thermodynamic parameters (E*, ΔH*, ΔS* and ΔG*) were calculated using Coats-Redfern and Horowitz-Metzeger methods. The bond length and force constant, F(U=O), for the uranyl complex was calculated. The DFT calculations were carried out to understand the optimized molecular geometry for the compounds. The calculated data indicated that Pd(II) complex with smaller energy gap value (∆E = 0.136 au) is more reactive than all compounds and La(III) complex with greater energy gap (∆E = 0.192 au) is less reactive. All studied compounds are treated as soft (η = 0.068-0.096) except MOX treated as hard (η = 0.16). The HOMO of all complexes is localized on MOX (100%) without any density on the Phen (0%) except Pd(II) complex, the HOMO is localized on Phen (61%). The LUMO in U(VI) complex is localized mainly on the U(VI) ion (63%), and in the Y(III) complex is localized mainly on Phen (89%). The cytotoxic activities against MCF-7, HCT-116 and the antimicrobial activity were tested.                     KEY WORDS: Moxifloxacin, 1,10-Phenanthroline, Spectroscopy, Thermal analysis, DFT, Antitumor agents   Bull. Chem. Soc. Ethiop. 2020, 34(2), 295-312 DOI: https://dx.doi.org/10.4314/bcse.v34i2.

    Identifying The Potential Sources of Chemical Elements in Drainage and Rivers Using Google Earth Imageries and Posteriori Knowledge

    Get PDF
    This study attempts to identify the potential sources of the chemical elements in the river and drainage water using in-situ water quality sampling and public domain satellite data. Monitoring the physico-chemical level of urban streams and rivers is important to secure sufficient water resources, an indicator to the ecological degradation in urban areas and an indicator of environmental pollution. Nonetheless, identifying the potential sources of chemical pollutants by field observation is constrained by hard labor activities, time, and cost. Having satellite imagery that provides land use activity information would be useful in determining the chemical sources. Therefore, the objective of this paper is to utilize the publicly accessible Google satellite images in identifying the potential sources of the chemical elements' presence in the water that is physically sampled and measured over the selected urban rivers and drainage of Johor Bahru. Three chemical elements were identified, ammonia (NH3), nitrate (NO3-), and phosphate (PO43-). The identification of the chemical sources is conducted based on the interpretation of the satellite-derived information together with the posteriori knowledge, experience, and inputs in an environmental chemistry perspective. The findings revealed that the proportion of land used did not always have a significant impact on the chemical content of the waterways. For ammonia, areas with significant hotspots (aquaculture, wet market) are more significant, although the size of the area is not dominant. The nitrate content, on the other hand, showed quite a distinct pattern linked to oil palm, intensive farming, and industrial or commercial areas. There was no distinct land use pattern associated with phosphate level. However, locations with high residential areas were likely to have high phosphate content in their respective waterways or drainage to the onsite investigations with minimal labor works, cost effective, and time efficient

    On the unitarity of higher-dervative and nonlocal theories

    Get PDF
    We consider two simple models of higher-derivative and nonlocal quantu systems.It is shown that, contrary to some claims found in literature, they can be made unitary.Comment: 8 pages, no figure

    Identifying The Potential Sources of Chemical Elements in Drainage and Rivers Using Google Earth Imageries and Posteriori Knowledge

    Get PDF
    This study attempts to identify the potential sources of the chemical elements in the river and drainage water using in-situ water quality sampling and public domain satellite data. Monitoring the physico-chemical level of urban streams and rivers is important to secure sufficient water resources, an indicator to the ecological degradation in urban areas and an indicator of environmental pollution. Nonetheless, identifying the potential sources of chemical pollutants by field observation is constrained by hard labor activities, time, and cost. Having satellite imagery that provides land use activity information would be useful in determining the chemical sources. Therefore, the objective of this paper is to utilize the publicly accessible Google satellite images in identifying the potential sources of the chemical elements' presence in the water that is physically sampled and measured over the selected urban rivers and drainage of Johor Bahru. Three chemical elements were identified, ammonia (NH3), nitrate (NO3-), and phosphate (PO43-). The identification of the chemical sources is conducted based on the interpretation of the satellite-derived information together with the posteriori knowledge, experience, and inputs in an environmental chemistry perspective. The findings revealed that the proportion of land used did not always have a significant impact on the chemical content of the waterways. For ammonia, areas with significant hotspots (aquaculture, wet market) are more significant, although the size of the area is not dominant. The nitrate content, on the other hand, showed quite a distinct pattern linked to oil palm, intensive farming, and industrial or commercial areas. There was no distinct land use pattern associated with phosphate level. However, locations with high residential areas were likely to have high phosphate content in their respective waterways or drainage to the onsite investigations with minimal labor works, cost effective, and time efficient
    corecore