1,160 research outputs found
Multilevel analysis of nuclear dynamics in lamin perturbed fibroblasts
The nuclear lamina provides structural support to the nucleus and has a central role in defining nuclear organization. Defects in its filamentous constituents, the lamins, lead to a class of diseases collectively referred to as laminopathies. On the cellular level, lamin mutations affect the physical integrity of nuclei and nucleo-cytoskeletal interactions, resulting in increased susceptibility to mechanical stress and altered gene expression [1]. Most studies regarding the mechanical properties of the nucleus in laminopathic conditions are based on the induction of extracellular stress, such as strain or compression, and focus on nuclear integrity and/or nucleo-cytoskeletal interaction [2]. Far less is known about the role of nuclear organization and mobility under basal steady-state conditions.
In this study, we quantitatively compared nuclear organization, nuclear deformation and chromatin mobility of fibroblasts from a Hutchinson-Gilford progeria patient with cells from a lamin A/C-deficient patient and wild-type dermal fibroblasts. To this end, we created a toolbox in imageJ for automatically analyzing both nuclear as well as subnuclear dynamics in living cells. Simultaneously, we developed a workflow for comparing cellular morphology and subcellular protein distribution in a high content fashion.
We found that the absence of functional lamin A/C leads to increased nuclear plasticity on the hour and minute time scale but also to increased intranuclear mobility down to the seconds time scale. In contrast, progeria cells showed overall reduced nuclear dynamics. In addition, high content analysis revealed marked morphological and topological differences between different culture passages within a cell type and between different pathological variants of culture-age matched laminopathic cell types
Tolerance and cross-tolerance to neurocognitive effects of THC and alcohol in heavy cannabis users
and cross-tolerance to neurocognitive effects of THC and alcohol in heavy cannabis user
Residual effects of esmirtazapine on actual driving performance: overall findings and an exploratory analysis into the role of CYP2D6 phenotype
INTRODUCTION: Esmirtazapine is evaluated as a novel drug for treatment of insomnia. PURPOSE: The present study was designed to assess residual effects of single and repeated doses of esmirtazapine 1.5 and 4.5 mg on actual driving in 32 healthy volunteers in a double-blind, placebo-controlled study. Treatment with single doses of zopiclone 7.5 mg was included as active control. METHODS: Treatments were administered in the evening. Driving performance was assessed in the morning, 11 h after drug intake, in a standardized on-the-road highway driving test. The primary study parameter was standard deviation of lateral position (SDLP), a measure of "weaving". All subjects were subjected to CYP2D6 phenotyping in order to distinguish poor metabolizers from extensive metabolizers of esmirtazapine. RESULTS: Overall, esmirtazapine 1.5 mg did not produce any clinically relevant change in SDLP after single and repeated dosing. Driving impairment, i.e., a rise in SDLP, did occur after a single-dose administration of esmirtazapine 4.5 mg but was resolved after repeated doses. Acute driving impairment was more pronounced after both doses of esmirtazapine in a select group of poor metabolizers (N = 7). A single-dose zopiclone 7.5 mg also increased SDLP as expected. CONCLUSION: It is concluded that single and repeated doses of 1.5 mg esmirtazapine are generally not associated with residual impairment. Single-dose administration of 4.5 mg esmirtazapine was associated with residual impairment that generally resolved after repeated administration. Exploratory analysis in a small group of poor CYP 2D6 metabolizers suggested that these subjects are more sensitive to the impairing effects of esmirtazapine on car driving
Особенности разработки палеозойских отложений Томской области
peer reviewedProton magnetic resonance spectroscopic data ((1)H-MR spectroscopy) of patients with 18q deletion syndrome have not yet been reported. (1)H-MR spectroscopy, performed in an affected 2-year-old girl with markedly delayed neuromotor development and typical supratentorial white-matter disease (WMD), showed an increase of choline and alpha-glutamate concentrations. Eight months later, simultaneously with clinical improvement, alpha-glutamate had normalised whereas choline remained slightly increased. Active demyelination or increased myelin turnover might contribute to the hitherto unexplained WMD of this rare disorder
Improvement of heat- and mass transfer modeling for single iron particles combustion using resolved simulations
In this work, we use a boundary layer resolved model to improve a Lagrangian point particle model to simulate the combustion of single iron particles. By resolving the full boundary layer, mass and heat transfer are accurately modeled, including Stefan flow. Therefore, the model is suitable to improve point particle models. This work focuses on the first stage of iron combustion, which lasts up to the maximum temperature. Temperature- and composition-dependent properties are used and phase transitions from solid to liquid and liquid to gas are taken into account. The Nusselt and Sherwood correlations are investigated in conditions typical for iron particle combustion. It is found that the 1/2-film temperature is the best film rule to use to model heat- and mass transfer for iron particle combustion. The boundary layer resolved model is used to validate the point particle models. Then, the model is systematically elaborated by including a temperature-dependent particle density, slip velocity and Stefan flow. The individual and combined effect of these phenomena on the burn duration are investigated. Including all these effects decreases the time to maximum temperature by around 25%. Furthermore, it is shown that if one neglects physical phenomena like slip and Stefan flow, but uses the 1/3-film rule instead of the 1/2-film rule, errors cancel and still reasonable agreement is obtained with experiments
Rivastigmine but not vardenafil reverses cannabis-induced impairment of verbal memory in healthy humans
RATIONALE: One of the most often reported cognitive deficits of acute cannabis administration is an impaired recall of previously learned information. OBJECTIVE: The aim of the present study was to determine whether cannabis-induced memory impairment in humans is mediated via glutamatergic or cholinergic pathways. METHODS: Fifteen occasional cannabis users participated in a double-blind, placebo-controlled, six-way cross-over study. On separate test days, subjects received combinations of pretreatment (placebo, vardenafil 20 mg or rivastigmine 3 mg) and treatment (placebo or 1,376 mg cannabis/kg body weight). Cognitive tests were administered immediately after inhalation of treatment was finished and included measures of memory (visual verbal learning task, prospective memory test, Sternberg memory test), perceptual-motor control (critical tracking task), attention (divided attention task) and motor impulsivity (stop signal task). RESULTS: The results of this study demonstrate that subjects under the influence of cannabis were impaired in all memory tasks, in critical tracking, divided attention and the stop signal task. Pretreatment with rivastigmine attenuated the effect of cannabis on delayed recall and showed a trend towards significance on immediate recall. When cannabis was given in combination with vardenafil, there were no significant interaction effects in any of the tasks. CONCLUSIONS: The present data therefore suggest that acetylcholine plays an important role in cannabis-induced memory impairment, whereas similar results for glutamate have not been demonstrated in this study
- …