3,650 research outputs found
Description of the inelastic collision of two solitary waves for the BBM equation
We prove that the collision of two solitary waves of the BBM equation is
inelastic but almost elastic in the case where one solitary wave is small in
the energy space. We show precise estimates of the nonzero residue due to the
collision. Moreover, we give a precise description of the collision phenomenon
(change of size of the solitary waves).Comment: submitted for publication. Corrected typo in Theorem 1.
Unexpected Scaling of the Performance of Carbon Nanotube Transistors
We show that carbon nanotube transistors exhibit scaling that is
qualitatively different than conventional transistors. The performance depends
in an unexpected way on both the thickness and the dielectric constant of the
gate oxide. Experimental measurements and theoretical calculations provide a
consistent understanding of the scaling, which reflects the very different
device physics of a Schottky barrier transistor with a quasi-one-dimensional
channel contacting a sharp edge. A simple analytic model gives explicit scaling
expressions for key device parameters such as subthreshold slope, turn-on
voltage, and transconductance.Comment: 4 pages, 4 figure
Principal Component Analysis of the Time- and Position-Dependent Point Spread Function of the Advanced Camera for Surveys
We describe the time- and position-dependent point spread function (PSF)
variation of the Wide Field Channel (WFC) of the Advanced Camera for Surveys
(ACS) with the principal component analysis (PCA) technique. The time-dependent
change is caused by the temporal variation of the focus whereas the
position-dependent PSF variation in ACS/WFC at a given focus is mainly the
result of changes in aberrations and charge diffusion across the detector,
which appear as position-dependent changes in elongation of the astigmatic core
and blurring of the PSF, respectively. Using >400 archival images of star
cluster fields, we construct a ACS PSF library covering diverse environments of
the observations (e.g., focus values). We find that interpolation of a
small number () of principal components or ``eigen-PSFs'' per exposure
can robustly reproduce the observed variation of the ellipticity and size of
the PSF. Our primary interest in this investigation is the application of this
PSF library to precision weak-lensing analyses, where accurate knowledge of the
instrument's PSF is crucial. However, the high-fidelity of the model judged
from the nice agreement with observed PSFs suggests that the model is
potentially also useful in other applications such as crowded field stellar
photometry, galaxy profile fitting, AGN studies, etc., which similarly demand a
fair knowledge of the PSFs at objects' locations. Our PSF models, applicable to
any WFC image rectified with the Lanczos3 kernel, are publicly available.Comment: Accepted to PASP. To appear in December issue. Figures are degraded
to meet the size limit. High-resolution version can be downloaded at
http://acs.pha.jhu.edu/~mkjee/acs_psf/acspsf.pd
Influence of single-neutron stripping on near-barrier <sup>6</sup>He+<sup>208</sup>Pb and <sup>8</sup>He+<sup>208</sup>Pb elastic scattering
The influence of single-neutron stripping on the near-barrier elastic scattering angular distributions for the 6,8He+208Pb systems is investigated through coupled reaction channels (CRC) calculations fitting recently published data to explore the differences in the absorptive potential found in the scattering of these two neutron-rich nuclei. The inclusion of the coupling reduces the elastic cross section in the Coulomb-nuclear interference region for 8He scattering, whereas for 6He its major impact is on the large-angle elastic scattering. The real and imaginary dynamic polarization potentials are obtained by inverting the CRC elastic scattering S-matrix elements. These show that the main absorptive features occur between 11 and 12 fm for both projectiles, while the attractive features are separated by about 1 fm, with their main structures occurring at 10.5 fm for 6He and 11.5 fm for 8He
Instability of two interacting, quasi-monochromatic waves in shallow water
We study the nonlinear interactions of waves with a doubled-peaked power
spectrum in shallow water. The starting point is the prototypical equation for
nonlinear uni-directional waves in shallow water, i.e. the Korteweg de Vries
equation. Using a multiple-scale technique two defocusing coupled Nonlinear
Schr\"odinger equations are derived. We show analytically that plane wave
solutions of such a system can be unstable to small perturbations. This
surprising result suggests the existence of a new energy exchange mechanism
which could influence the behaviour of ocean waves in shallow water.Comment: 4 pages, 2 figure
Multiproxy approach revealing climate and cultural changes during the last 26kyrs in south-central Chile
Multiproxy approach from Purén Lumaco Valley (38°S) describes the paleonvironmental history during the Last Maximum Glacial (LGM) in south-central Chile. Three sediment cores and severals AMS 14C dates were used to perform a complete pollen, diatoms, chironomids, and sedimentological records demonstrating the existence of a large and non profundal paleolake, between 25 and 20kyr BP.Some of these evidence are laminated silty-clay sediments (lacustrine rhythmites), associated with the presence of siderite mineral (FeCO3), besides biological proxies like Fragilaria construens and Stauroforma inermes (planctonic diatoms), and Dicrotendipes sp. and Tanytarsini tribe (littoral chironomids). The pollen ensemble reveals the first glacial refuge of Araucaria araucana forests in the low lands during the LGM.The lake was drained abruptly into a swamp/bog at 12kyr BP and colonized by Myrtaceae wet forest. This evidence suggest the dry/warm climate period of early Holocene in south-central Chile. Later, the sediments indicate variable lacustrine levels, and increase of charcoal particles, associated to current climatic conditions. The pollen spectrum dominated by Myrtaceae and Nothofagus contrasts with a strongly disturb current landscape. Actually, Purén-Lumaco valley constitutes a complex peat-bog system dominated by exotic grasses and forest species (Tritricum aestivum, Pinus radiata and Eucalyptus spp.).Some archaeological antecedents in the area document the human development at ca. 7yrs BP. The greatest archaeological characteristic present in the valley is the kuel, a Mapuche earth accumulation. The presence and extension of almost 300 kuel in the valley reflect the social/economic development, and partly explains why the region was the major resistance area for Spanish colonizer during XVI-XVII centuries. Also the archaeological findings reveal the presence of maize pollen (Zea mays) within their food consumption.The influence of climate and human impact in Holocene environments provide a better basis for understanding and managing the present landscape in Araucanian Region. Almost the absence of native forests in the area makes urgent strategies for the recovery and rehabilitation of a relict ecosystem that today represents their regional analog only in the tops of the Chilean Coastal Range
Non-volatile molecular memory elements based on ambipolar nanotube field effect transistors
We have fabricated air-stable n-type, ambipolar carbon nanotube field effect
transistors (CNFETs), and used them in nanoscale memory cells. N-type
transistors are achieved by annealing of nanotubes in hydrogen gas and
contacting them by cobalt electrodes. Scanning gate microscopy reveals that the
bulk response of these devices is similar to gold-contacted p-CNFETs,
confirming that Schottky barrier formation at the contact interface determines
accessibility of electron and hole transport regimes. The transfer
characteristics and Coulomb Blockade (CB) spectroscopy in ambipolar devices
show strongly enhanced gate coupling, most likely due to reduction of defect
density at the silicon/silicon-dioxide interface during hydrogen anneal. The CB
data in the ``on''-state indicates that these CNFETs are nearly ballistic
conductors at high electrostatic doping. Due to their nanoscale capacitance,
CNFETs are extremely sensitive to presence of individual charge around the
channel. We demonstrate that this property can be harnessed to construct data
storage elements that operate at the few-electron level.Comment: 6 pages text, 3 figures and 1 table of content graphic; available as
NanoLetters ASAP article on the we
- …