77 research outputs found
Using stochastic acceleration to place experimental limits on the charge of antihydrogen
Assuming hydrogen is charge neutral, CPT invariance demands that antihydrogen
also be charge neutral. Quantum anomaly cancellation also demands that
antihydrogen be charge neutral. Standard techniques based on measurements of
macroscopic quantities of atoms cannot be used to measure the charge of
antihydrogen. In this paper, we describe how the application of randomly
oscillating electric fields to a sample of trapped antihydrogen atoms, a form
of stochastic acceleration, can be used to place experimental limits on this
charge
Quantum Fluctuations of Coulomb Potential as a Source of Flicker Noise. The Influence of External Electric Field
Fluctuations of the electromagnetic field produced by quantized matter in
external electric field are investigated. A general expression for the power
spectrum of fluctuations is derived within the long-range expansion. It is
found that in the whole measured frequency band, the power spectrum of
fluctuations exhibits an inverse frequency dependence. A general argument is
given showing that for all practically relevant values of the electric field,
the power spectrum of induced fluctuations is proportional to the field
strength squared. As an illustration, the power spectrum is calculated
explicitly using the kinetic model with the relaxation-type collision term.
Finally, it is shown that the magnitude of fluctuations produced by a sample
generally has a Gaussian distribution around its mean value, and its dependence
on the sample geometry is determined. In particular, it is demonstrated that
for geometrically similar samples, the power spectrum is inversely proportional
to the sample volume. Application of the obtained results to the problem of
flicker noise is discussed.Comment: 14 pages, 3 figure
Centrifugal separation and equilibration dynamics in an electron-antiproton plasma
Charges in cold, multiple-species, non-neutral plasmas separate radially by
mass, forming centrifugally-separated states. Here, we report the first
detailed measurements of such states in an electron-antiproton plasma, and the
first observations of the separation dynamics in any centrifugally-separated
system. While the observed equilibrium states are expected and in agreement
with theory, the equilibration time is approximately constant over a wide range
of parameters, a surprising and as yet unexplained result. Electron-antiproton
plasmas play a crucial role in antihydrogen trapping experiments
Antihydrogen and mirror-trapped antiproton discrimination: Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap
Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum
(minimum-B) trap formed by superconducting octupole and mirror magnet coils.
The trapped antiatoms were detected by rapidly turning off these magnets,
thereby eliminating the magnetic minimum and releasing any antiatoms contained
in the trap. Once released, these antiatoms quickly hit the trap wall,
whereupon the positrons and antiprotons in the antiatoms annihilated. The
antiproton annihilations produce easily detected signals; we used these signals
to prove that we trapped antihydrogen. However, our technique could be
confounded by mirror-trapped antiprotons, which would produce
seemingly-identical annihilation signals upon hitting the trap wall. In this
paper, we discuss possible sources of mirror-trapped antiprotons and show that
antihydrogen and antiprotons can be readily distinguished, often with the aid
of applied electric fields, by analyzing the annihilation locations and times.
We further discuss the general properties of antiproton and antihydrogen
trajectories in this magnetic geometry, and reconstruct the antihydrogen energy
distribution from the measured annihilation time history.Comment: 17 figure
Production of antihydrogen at reduced magnetic field for anti-atom trapping
We have demonstrated production of antihydrogen in a 1T solenoidal
magnetic field. This field strength is significantly smaller than that used in
the first generation experiments ATHENA (3T) and ATRAP (5T). The
motivation for using a smaller magnetic field is to facilitate trapping of
antihydrogen atoms in a neutral atom trap surrounding the production region. We
report the results of measurements with the ALPHA (Antihydrogen Laser PHysics
Apparatus) device, which can capture and cool antiprotons at 3T, and then
mix the antiprotons with positrons at 1T. We infer antihydrogen production
from the time structure of antiproton annihilations during mixing, using mixing
with heated positrons as the null experiment, as demonstrated in ATHENA.
Implications for antihydrogen trapping are discussed
3D-printed components for quantum devices
Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. The full potential of applying such capabilities to areas as diverse as biomedical imaging, non-invasive underground mapping, and GPS-free navigation can only be realised with the scalable production of efficient, robust and portable devices. We introduce additive manufacturing as a production technique of quantum device components with unrivalled design freedom and rapid prototyping. This provides a step change in efficiency, compactness and facilitates systems integration. As a demonstrator we present an ultrahigh vacuum compatible ultracold atom source dissipating less than ten milliwatts of electrical power during field generation to produce large samples of cold rubidium gases. This disruptive technology opens the door to drastically improved integrated structures, which will further reduce size and assembly complexity in scalable series manufacture of bespoke portable quantum devices
Alpha Antihydrogen Experiment
ALPHA is an experiment at CERN, whose ultimate goal is to perform a precise
test of CPT symmetry with trapped antihydrogen atoms. After reviewing the
motivations, we discuss our recent progress toward the initial goal of stable
trapping of antihydrogen, with some emphasis on particle detection techniques.Comment: Invited talk presented at the Fifth Meeting on CPT and Lorentz
Symmetry, Bloomington, Indiana, June 28-July 2, 201
A novel antiproton radial diagnostic based on octupole induced ballistic loss
We report results from a novel diagnostic that probes the outer radial
profile of trapped antiproton clouds. The diagnostic allows us to determine the
profile by monitoring the time-history of antiproton losses that occur as an
octupole field in the antiproton confinement region is increased. We show
several examples of how this diagnostic helps us to understand the radial
dynamics of antiprotons in normal and nested Penning-Malmberg traps. Better
understanding of these dynamics may aid current attempts to trap antihydrogen
atoms
Compression of Antiproton Clouds for Antihydrogen Trapping
Control of the radial profile of trapped antiproton clouds is critical to
trapping antihydrogen. We report the first detailed measurements of the radial
manipulation of antiproton clouds, including areal density compressions by
factors as large as ten, by manipulating spatially overlapped electron plasmas.
We show detailed measurements of the near-axis antiproton radial profile and
its relation to that of the electron plasma
- …