6 research outputs found

    Historia del cultivo de la judía: su evolución más allá de las áreas de origen y domesticación

    Get PDF
    The common bean (Phaseolus vulgaris L.) is the most important grain legume for direct human consumption on a global scale. Current bean germplasm collections show a wide variation of phenotypes, although genetic erosion is gradually affecting this species as in many countries local traditional varieties are being replaced by elite cultivars. This crop has spread to every continent over the past few centuries, which has resulted in a complex genetic structure of bean germplasm outside its areas of origin and domestication (South and Central America). Some evidence indicates that this germplasm is more complex than previously thought and contains additional, as yet unexplored, diversity. This is especially the case in southern Europe, particularly in the Iberian Peninsula, where it was introduced in the early sixteenth century and has been documented as a secondary focus of domestication of the species. The integration of omic data into bean germplasm documentation databases and its combination with genotypic, phenotypic and agro-ecological data is opening a new era for the enhancement and efficient use of common bean genetic resources as the main grain legume in Europe and worldwide.La judía común (Phaseolus vulgaris L.) es la leguminosa de grano más relevante para el consumo humano directo en escala global. Las colecciones de germoplasma de judía actuales muestran una amplia variación de fenotipos, aunque en muchos países las variedades locales están siendo reemplazados por cultivares de élite, concentrando la producción agraria en un número cada vez más reducido de cultivares con la consecuente erosión genética o pérdida de biodiversidad. Este cultivo se ha extendido por todos los continentes durante los últimos siglos, lo que ha dado lugar a una compleja estructura genética fuera de sus áreas de origen y domesticación (Mesoamérica y Sudamérica). Diversas evidencias indican que el germoplasma europeo contiene una diversidad adicional mayor de la esperada especialmente en el Sur de Europa, y particularmente en la Península Ibérica, dónde fue introducida a comienzos del siglo XVI, y que ha sido documentada como un centro de domesticación secundaria de la especie. La integración de datos ómicos en las bases de datos de documentación del germoplasma de judía y su combinación con datos genéticos, fenotípicos y agro-ecológicos está abriendo una nueva era para la valorización y el uso eficiente de los recursos genéticos de la judía común como la principal leguminosa de grano para consumo humano en Europa y globalmente

    Preliminary study for resistance to common bean mosaic virus in common bean landraces

    No full text
    Trabajo presentado en las XI Jornadas de selección y mejora de plantas hortícolas, celebradas en Córdoba (España), entre el 21 y el 23 de octubre de 1998.- 5 páginas y 2 tablas.[EN] Resistance to bean common mosaic virus (BCMV) was evaluated among a collection of 286 accessions of Phaseolus vulgaris L., that belonged to different origin, under field conditions. The majority of bean landraces from La Coruña (Northwest of Spain) were positives for BCMV. There were no relation between seed color and suceptibility to BCMV, although most of the black and brown-seeded landraces had a negative result for BCMV. Field screening of bean germplasm under field conditions revealed a large number of genotypes with possible potential as sources of resistance. However, these results could be confused by the environment, and these materials should be confirmed again and under mechanical inoculation.[ES] Se evaluó la presencia del virus del mosaico común (BCMV) en una colección de 286 entradas de Phaseolus vulgaris L., de diferente procedencia y en condiciones de campo. Una gran proporción de las variedades autóctonas de La Coruña (Noroeste de España) presentaron reacción positiva para BCMV. Por otro lado, no se encontró relación entre el tipo de semilla y síntomas de BCMV, aunque variedades de judía de semilla negra y marrón desarrollaron en su mayoría reacción negativa al BCMV. La evaluación de germoplasma de judía común en condiciones de campo reveló un gran número de variedades como posibles fuentes de resistencia, aunque estos resultados podrían estar confundídos con el ambiente o debido a la existencia de reacciones cruzadas, y deberían ser confirmados en otras condiciones y con inoculación artificial.Peer reviewe

    Legume inoculants using Rhizobia strains effective to reduce nitrous oxide emissions

    No full text
    17 páginasAlthough the use of synthetic fertilizers has increased crop yields to feed a growing population, excess nitrogen fertilizer has resulted in nitrate contamination of surface and groundwater, soils, sediments, seas, and oceans. During the N cycle in nature, nitrification and denitrification are the only processes by which the ammonium formed after fixation of atmospheric N2 is transformed into nitrate, which is further reduced again to N2, which is released into the atmosphere. During these processes, nitrous oxide (N2O), a potent greenhouse gas involved in global climatic change, is formed. Legumes are, after cereals, the main source of food for the world population. These plants provide proteins, carbohydrates, minerals, vitamins, oils, fiber, and other compounds of high nutraceutical value and beneficial properties for health. Legumes possess the extraordinary ability to establish atmospheric N2-fixing symbiosis with soil bacteria known as rhizobia. A consequence of the symbiosis is the formation in the roots, sometimes in stems, of specialized structures, the nodules, where the fixation (reduction) of the inert compound N2 to form the biologically active compound ammonium (NH4 +) takes place. This ammonium is subsequently converted into other nitrogenous compounds that are transferred to the rest of the plant for use in the synthesis of amino acids, proteins, etc. This explains the high N content of the leguminous plants, the reason why these plants fertilize the soil where they are grown, and why they are used in crop rotation and in revegetation and reforestation programs. Rhizobia do not nitrify, and most of them lack, or do not express, the complete set of genes responsible for the synthesis or the enzymes involved in denitrification, among them, the nitrous oxide reductase enzyme (Nos) responsible for the reduction of N2O to N2. Since denitrification also occurs within the nodules, nitrate can be converted into N2. In rhizobia lacking the nitrous oxide reductase enzyme, nitrous oxide accumulates and will eventually be emitted into the atmosphere. Thus, it is a paradox that, being nodulated, legumes are a major source of N incorporation into the soil, but they are also producers of the N2O greenhouse gas. Considering the vast extension where these plants are grown, N2O production by nodulated legumes is of major concern. Here, we review the main processes leading to the production of N2O by microorganisms in the N cycle. Special attention is paid to N2O formation in nodules formed by the rhizobial endosymbionts Bradyrhizobium, Ensifer, and Rhizobium of the agriculturally important legume species soybean, alfalfa, and common bean, respectively.Peer reviewe
    corecore