1,122 research outputs found

    Quantum geometrodynamics of the Bianchi IX model in extended phase space

    Get PDF
    A way of constructing mathematically correct quantum geometrodynamics of a closed universe is presented. The resulting theory appears to be gauge-noninvariant and thus consistent with the observation conditions of a closed universe, by that being considerably distinguished from the conventional Wheeler - DeWitt one. For the Bianchi-IX cosmological model it is shown that a normalizable wave function of the Universe depends on time, allows the standard probability interpretation and satisfies a gauge-noninvariant dynamical Schrodinger equation. The Wheeler - DeWitt quantum geometrodynamics is represented by a singular, BRST-invariant solution to the Schrodinger equation having no property of normalizability.Comment: LaTeX, 18 pages, to be published in Int. J. Mod. Phys.

    Group-level Emotion Recognition using Transfer Learning from Face Identification

    Full text link
    In this paper, we describe our algorithmic approach, which was used for submissions in the fifth Emotion Recognition in the Wild (EmotiW 2017) group-level emotion recognition sub-challenge. We extracted feature vectors of detected faces using the Convolutional Neural Network trained for face identification task, rather than traditional pre-training on emotion recognition problems. In the final pipeline an ensemble of Random Forest classifiers was learned to predict emotion score using available training set. In case when the faces have not been detected, one member of our ensemble extracts features from the whole image. During our experimental study, the proposed approach showed the lowest error rate when compared to other explored techniques. In particular, we achieved 75.4% accuracy on the validation data, which is 20% higher than the handcrafted feature-based baseline. The source code using Keras framework is publicly available.Comment: 5 pages, 3 figures, accepted for publication at ICMI17 (EmotiW Grand Challenge

    A view on the problems of Quantum Gravity

    Full text link
    The existing approaches to quantization of gravity aim at giving quantum description of 3-geometry following to the ideas of the Wheeler -- DeWitt geometrodynamics. In this description the role of gauge gravitational degrees of freedom is missed. A probable alternative is to consider gravitational dynamics in extended phase space, taking into account the distinctions between General Relativity and other field theories. The formulation in extended phase space leads to some consequences at classical and quantum levels. At the classical level, it ensures that Hamiltonian dynamics is fully equivalent to Lagrangian dynamics, and the algebra of Poisson brackets is invariant under reparametrizations in a wide enough class including reparametrizations of gauge variables, meantime in the canonical Dirac approach the constraints' algebra is not invariant that creates problems with quantization. At the quantum level, the approach come to the description in which the observer can see various but complementary quantum gravitational phenomena in different reference frames that answers the spirit of General Relativity and Quantum Theory. Though until now the approach was applied to General Relativity in its original formulations, its implementation in different trends, including Quantum Loop Gravity or some other representations of gravitational variables, would also be of interest.Comment: 6 pages, talk presented at the International Conference on Quantum Gravity "Loops 11", Madrid, May 201

    Fault Diagnosis for Polynomial Hybrid Systems

    Get PDF
    Safety requirements of technological processes trigger an increased demand for elaborate fault diagnosis tools. However, abrupt changes in system behavior are hard to formulate with continuous models but easier to represent in terms of hybrid systems. Therefore, we propose a set-based approach for complete fault diagnosis of hybrid polynomial systems formulated as a feasibility problem. We employ mixed-integer linear program relaxation of this formulation to exploit the presence of discrete variables. We improve the relaxation with additional constraints for the discrete variables. The efficiency of the method is illustrated with a simple two-tank example subject to multiple faults

    Strong nonlinear optical response of graphene flakes measured by four-wave mixing

    Get PDF
    We present the first experimental investigation of nonlinear optical properties of graphene flakes. We find that at near infrared frequencies a graphene monolayer exhibits a remarkably high third-order optical nonlinearity which is practically independent of the wavelengths of incident light. The nonlinear optical response can be utilized for imaging purposes, with image contrasts of graphene which are orders of magnitude higher than those obtained using linear microscopy.Comment: 4 pages, 5 figure

    Polar-bulge galaxies

    Full text link
    Based on SDSS data, we have selected a sample of nine edge-on spiral galaxies with bulges whose major axes show a high inclination to the disk plane. Such objects are called polar-bulge galaxies. They are similar in their morphology to polar-ring galaxies, but the central objects in them have small size and low luminosity. We have performed a photometric analysis of the galaxies in the g and r bands and determined the main characteristics of their bulges and disks. We show that the disks of such galaxies are typical for the disks of spiral galaxies of late morphological types. The integrated characteristics of their bulges are similar to the parameters of normal bulges. The stellar disks of polar-bulge galaxies often show large-scale warps, which can be explained by their interaction with neighboring galaxies or external accretion from outside.Comment: 8 pages, 3 figure
    • …
    corecore