54,373 research outputs found

    The June 2012 transit of Venus. Framework for interpretation of observations

    Get PDF
    Ground based observers have on 5/6th June 2012 the last opportunity of the century to watch the passage of Venus across the solar disk from Earth. Venus transits have traditionally provided unique insight into the Venus atmosphere through the refraction halo that appears at the planet outer terminator near ingress/egress. Much more recently, Venus transits have attracted renewed interest because the technique of transits is being successfully applied to the characterization of extrasolar planet atmospheres. The current work investigates theoretically the interaction of sunlight and the Venus atmosphere through the full range of transit phases, as observed from Earth and from a remote distance. Our model predictions quantify the relevant atmospheric phenomena, thereby assisting the observers of the event in the interpretation of measurements and the extrapolation to the exoplanet case. Our approach relies on the numerical integration of the radiative transfer equation, and includes refraction, multiple scattering, atmospheric extinction and solar limb darkening, as well as an up to date description of the Venus atmosphere. We produce synthetic images of the planet terminator during ingress/egress that demonstrate the evolving shape, brightness and chromaticity of the halo. Guidelines are offered for the investigation of the planet upper haze from vertically-unresolved photometric measurements. In this respect, the comparison with measurements from the 2004 transit appears encouraging. We also show integrated lightcurves of the Venus/Sun system at various phases during transit and calculate the respective Venus-Sun integrated transmission spectra. The comparison of the model predictions to those for a Venus-like planet free of haze and clouds (and therefore a closer terrestrial analogue) complements the discussion and sets the conclusions into a broader perspective.Comment: 14 pages; 14 figures; Submitted on 02/06/2012; A&A, accepted for publication on 30/08/201

    A neural mechanism for binaural pitch perception via ghost stochastic resonance

    Full text link
    We present a physiologically plausible binaural mechanism for the perception of the pitch of complex sounds via ghost stochastic resonance. In this scheme, two neurons are driven by noise and different periodic signal each (with frequencies f1=kf0 and f2=(k+1)f0, where k>1), and their outputs (plus noise) are applied synaptically to a third neuron. Our numerical results, using the Morris-Lecar neuron model with chemical synapses explicity considered, show that intermediate noise levels enhance the response of the third neuron at frequencies close to f0, as in the cases previously described of ghost resonance. For the case of inharmonic combinations of inputs (both frequencies shifted by the same amount Df) noise is also seen to enhance the response of the third neuron at a frequency fr with also shift linearly with Df. In addition, we show that similar resonances can be observed as a function of the synaptic time constant. The suggested ghost-resonance-based stochastic mechanism can thus arise either at the peripheral level or at a higher level of neural processing in the perception of the pitchComment: 7 pages, 5 figure

    Derivation of the physical parameters of the jet in S5 0836+710 from stability analysis

    Full text link
    A number of extragalactic jets show periodic structures at different scales that can be associated with growing instabilities. The wavelengths of the developing instability modes and their ratios depend on the flow parameters, so the study of those structures can shed light on jet physics at the scales involved. In this work, we use the fits to the jet ridgeline obtained from different observations of S5 B0836++710 and apply stability analysis of relativistic, sheared flows to derive an estimate of the physical parameters of the jet. Based on the assumption that the observed structures are generated by growing Kelvin-Helmholtz (KH) instability modes, we have run numerical calculations of stability of a relativistic, sheared jet over a range of different jet parameters. We have spanned several orders of magnitude in jet-to-ambient medium density ratio, and jet internal energy, and checked different values of the Lorentz factor and shear layer width. This represents an independent method to obtain estimates of the physical parameters of a jet. By comparing the fastest growing wavelengths of each relevant mode given by the calculations with the observed wavelengths reported in the literature, we have derived independent estimates of the jet Lorentz factor, specific internal energy, jet-to-ambient medium density ratio and Mach number. We obtain a jet Lorentz factor γ≃12\gamma \simeq 12, specific internal energy of ε≃10−2 c2\varepsilon \simeq 10^{-2}\,c^2, jet-to-ambient medium density ratio of η≈10−3\eta\approx 10^{-3}, and an internal (classical) jet Mach number of Mj≈12M_\mathrm{j}\approx 12. We also find that the wavelength ratios are better recovered by a transversal structure with a width of ≃10 %\simeq 10\,\% of the jet radius. This method represents a powerful tool to derive the jet parameters in all jets showing helical patterns with different wavelengths.Comment: Accepted for publication in A&A, 15 pages, 12 figure
    • …
    corecore