2,653 research outputs found

    Mesh ratios for best-packing and limits of minimal energy configurations

    Get PDF
    For NN-point best-packing configurations ωN\omega_N on a compact metric space (A,ρ)(A,\rho), we obtain estimates for the mesh-separation ratio γ(ωN,A)\gamma(\omega_N,A), which is the quotient of the covering radius of ωN\omega_N relative to AA and the minimum pairwise distance between points in ωN\omega_N. For best-packing configurations ωN\omega_N that arise as limits of minimal Riesz ss-energy configurations as ss\to \infty, we prove that γ(ωN,A)1\gamma(\omega_N,A)\le 1 and this bound can be attained even for the sphere. In the particular case when N=5 on S2S^2 with ρ\rho the Euclidean metric, we prove our main result that among the infinitely many 5-point best-packing configurations there is a unique configuration, namely a square-base pyramid ω5\omega_5^*, that is the limit (as ss\to \infty) of 5-point ss-energy minimizing configurations. Moreover, γ(ω5,S2)=1\gamma(\omega_5^*,S^2)=1

    One-rank interaction kernel of the two-nucleon system for medium and high energies

    Full text link
    A new version of the separable kernel of the nucleon-nucleon interaction in the Bethe-Salpeter approach is presented. The phase shifts are fitted to recent experimental data for singlet and uncoupled triplet partial waves of the neutron-proton scattering with total angular momenta J=0,1. The results are compared with other model calculations.Comment: 10 pages, 5 figures, 3 table
    corecore