75 research outputs found

    The mass of the black hole in RE J1034+396

    Get PDF
    The black hole mass measurement in active galaxies is a challenge, particularly in sources where the reverberation method cannot be applied. We aim to determine the black hole mass in a very special object, RE J1034+396, one of the two AGN with QPO oscillations detected in X-rays, and a single bright AGN with optical band totally dominated by starlight. We fit the stellar content using the code starlight, and the broad band disk contribution to optical/UV/X-ray emission is modeled with optxagnf. We also determine the black hole mass using several other independent methods. Various methods give contradictory results. Most measurements of the blacc hole mass are in the range 1.e6-1.e7 Msun, and the measurements based on dynamics give higher values than measurements based on Hbeta and Mg II emission lines.Comment: A&A, in pres

    RT Crucis: A look into the X-ray emission of a peculiar symbiotic star

    Get PDF
    © 2016 ESO.Symbiotic stars are a heterogeneous class of interacting binaries. Among them, RT Cru has been classified as prototype of a subclass that is characterised by hard X-ray spectra that extend past ∼20 keV. We analyse ∼8.6 Ms of archival INTEGRAL data collected during the period 2003-2014, ∼ 140 ks of Swift/XRT data, and a Suzaku observation of 39 ks, to study the spectral X-ray emission and investigate the nature of the compact object. Based on the 2MASS photometry, we estimate the distance to the source of 1.2-2.4 kpc. The X-ray spectrum obtained with Swift/XRT, JEM-X, IBIS/ISGRI, and Suzaku data is well fitted by a cooling flow model modified by an absorber that fully covers the source and two partially covering absorbers. Assuming that the hard X-ray emission of RT Cru originates from an optically thin boundary layer around a non-magnetic white dwarf, we estimated a mass of the white dwarf of MWD ≈ 1.2M⊙. The mass accretion rate obtained for this source might be too high for the optically thin boundary layer scenario. Therefore we investigate other plausible scenarios to model its hard X-ray emission. We show that, alternatively, the observed X-ray spectrum can be explained with the X-ray emission from the post-shock region above the polar caps of a magnetised white dwarf with mass MWD ≈ 0.9-1.1M⊙

    Universal spectral shape of high accretion rate AGN

    Full text link
    The spectra of quasars and NLS1 galaxies show surprising similarity in their spectral shape. They seem to scale only with the accretion rate. This is in contradiction with the simple expectations from the standard disk model which predicts lower disk temperature for higher black hole mass. Here we consider two mechanisms modifying the disk spectrum: the irradiation of the outer disk due to the scattering of the flux by the extended ionized medium (warm absorber and the development of the warm Comptonizing disk skin under the effect of the radiation pressure instability. Those two mechanisms seem to lead to a spectrum which indeed roughly scales, as observed, only with the accretion rate. The scenario applies only to objects with relatively high luminosity to the Eddington luminosity ratio for which disk evaporation is inefficient.Comment: 14 pages, 14 figures, 1 table, accepted for publication in A&

    Constraints on the black hole spin in the quasar SDSS J094533.99+100950.1

    Full text link
    The spin of the black hole is an important parameter which may be responsible for the properties of the inflow and outflow of the material surrounding a black hole. Broad band IR/optical/UV spectrum of the quasar SDSS J094533.99+100950.1 is clearly disk-dominated, with the spectrum peaking up in the observed frequency range. Therefore, disk fitting method usually used for Galactic black holes can be used in this object to determine the black hole spin. We develop the numerical code for computing disk properties, including radius-dependent hardening factor, and we apply the ray-tracing method to incorporate all general relativity effects in light propagation. We show that the simple multicolor disk model gives a good fit, without any other component required, and the disk extends down to the marginally stable orbit. The best fit accretion rate is 0.13, well below the Eddington limit, and the black hole spin is moderate, 0.3. The contour error for the fit combined with the constraints for the black hole mass and the disk inclination gives a constraint that the spin is lower than 0.8. We discuss the sources of possible systematic errors in the parameter determinations

    Narrow-line Seyfert 1 galaxies: an amasing class of AGN

    Full text link
    [Abridged] Narrow-line Seyfert 1 (NLS1) galaxies are a class of active galactic nuclei (AGN) that have all the properties of type 1 Seyfert galaxies but show peculiar characteristics, including the narrowest Balmer lines, strongest Fe II emission, and extreme properties in the X-rays. Line and continuum radio observations provide an optimal tool to access the (often) optically obscured innermost regions of AGN and reveal the kinematics of the gas around their central engines. We investigate the interplay between the peculiar NLS1 class of AGN and the maser phenomenon, to help us understand the nature of the maser emission in some NLS1s where water maser emission has been detected. We observed a sample of NLS1 galaxies with the Green Bank Telescope in a search for water maser emission at 22 GHz. We also reduced and analysed archival Green Bank Telescope and Very Large Array data and produced 22-GHz spectra for the five NLS1 galaxies with detected maser emission. In particular, we imaged the maser and nuclear radio continuum of NGC5506 at subarcsec scales with the Very Large Array. We discovered maser emission in two NLS1 galaxies: IGRJ16385-2057, and IRAS03450+0055. In addition to the three previously known maser detections in the NLS1s Mrk766, NGC4051, and NGC5506, this yields a water maser detection rate in NLS1 galaxies of ~7% (5/71). This value rises significantly to ~21% (5/24) when considering only NLS1 galaxies at recessional velocities less than 10000 km/s. For NGC4051 and NGC5506, we find that the water maser emission is located within 5 and 12 pc, respectively, of nuclear radio continuum knots, which are interpreted as core-jet structures.Comment: 11 pages, 5 figures, 2 tables. Accepted by Astronomy & Astrophysic

    Relationships between serum adiponectin and soluble TNF-α receptors and glucose and lipid oxidation in lean and obese subjects

    Get PDF
    Insulin resistance might be associated with an impaired ability of insulin to stimulate glucose oxidation and inhibit lipid oxidation. Insulin action is also inversely associated with TNF-α system and positively related to adiponectin. The aim of the present study was to analyze the associations between serum adiponectin, soluble TNF-α receptors concentrations and the whole-body insulin sensitivity, lipid and glucose oxidation, non-oxidative glucose metabolism (NOGM) and metabolic flexibility in lean and obese subjects. We examined 53 subjects: 25 lean (BMI < 25 kg × m−2) and 28 with overweight or obesity (BMI > 25 kg × m−2) with normal glucose tolerance. Hyperinsulinemic euglycemic clamp and indirect calorimetry were performed. An increase in respiratory exchange ratio in response to insulin was used as a measure of metabolic flexibility. Obese subjects had lower insulin sensitivity, adiponectin and higher sTNFR1 (all P < 0.001) and sTNFR2 (P = 0.001). Insulin sensitivity was positively related to adiponectin (r = 0.49, P < 0.001) and negatively related to sTNFR1 (r = −0.40, P = 0.004) and sTNFR2 (r = −0.52, P < 0.001). Adiponectin was related to the rate of glucose (r = 0.47, P < 0.001) and lipid (r = −0.40, P = 0.003) oxidation during the clamp, NOGM (r = 0.41, P = 0.002) and metabolic flexibility (r = 0.36, P = 0.007). Serum sTNFR1 and sTNFR2 were associated with the rate of glucose (r = −0.45, P = 0.001; r = −0.51, P < 0.001, respectively) and lipid (r = 0.52, P < 0.001; r = 0.46, P = 0.001, respectively) oxidation during hyperinsulinemia, NOGM (r = −0.31, P = 0.02; r = −0.43, P = 0.002, respectively) and metabolic flexibility (r = −0.47 and r = −0.51, respectively, both P < 0.001) in an opposite manner than adiponectin. Our data suggest that soluble TNF-α receptors and adiponectin have multiple effects on glucose and lipid metabolism in obesity

    Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

    Get PDF
    We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies.</p

    Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation

    Get PDF
    The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ\gamma-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ\gamma-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ\gamma-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2z=2 and to constrain or detect γ\gamma-ray halos up to intergalactic-magnetic-field strengths of at least 0.3pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ\gamma-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ\gamma-ray cosmology

    Contribution a l'etude de resonateurs dielectriques: application des resonateurs partiellement metallises a la realisation d'oscillateurs UHF

    No full text
    SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : T 79184 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore