47 research outputs found

    FEATURES OF POSTOPERATIVE PERIOD IN PATIENTS AFTER BRAIN REVASCULARIZATION

    Get PDF
    The aim of the research was to compare incidence of small complications after carotid endarterectomy (CEA) versus carotid artery stenting, as well as to evaluate its application in specific clinical situations. The outcomes of1826 patients who underwent surgery for stenosis of the internal carotid artery (ICA) were analyzed. There were two groups: 1018 patients who underwent CEA and 808 patients who carried the stenting. Age of patients was greater and coronary heart disease, diabetes, chronic obstructive pulmonary disease occurs more often in group with endovascular treatment, and they had rife stroke anamnesis. The mortality rate, uncontrolled hypertension and transient ischemic attacks were similar in early postoperative period. Stroke frequency was higher in patients with carotid artery stenting (35 (4,3 %) versus 27 patients (2,6 %) with CEA (p = 0,02)), and myocardial infarction took place more often after CEA (38 (3,7 %) versus 13 (1,6 %) patients with endovascular treatment (p = 0,008)). There was no statistically significant difference in security between CEA and stenting. However, treatment of carotid stenosis should be chosen according to individual characteristics, including individual anatomy

    CEREBRAL REVASCULIZATION IN PATIENTS OF 70 YEARS AND OLDER

    Get PDF
    The aim of the work was to evaluate the perioperative management of aged patients after elective surgical cerebral revascularization. We analyzed the outcomes of 813 patients of 70 years and older who had surgery for stenosis of the internal carotid artery [ІБА]. There were two groups: 392 patients who had carotid endarterectomy [CEA] and 421 patients who had the stenting. Age of the patients, severity of disease and comorbidity were similar in both groups In aged patients, the incidence of acute disorders of cerebral circulation (stroke] after CEA was significantly lower than the one after stenting (p = 0,04]. Frequency of perioperative myocardial infarction [MI] was 3 times higher in cases with CEA (p = 0,03]. in patients of 70 years and older, CEA shown lower incidence of stroke, however, there is increase of perioperative MI while using this method. Endovascular treatment could be chosen in patients with severe cardiac disease according to atherosclerotic plaques with no risk of embolism. In addition, the individual approach and assessment of social aspect are necessary

    Development of a technology for the preparation of a dry nutrient medium for anthrax vaccine production

    Get PDF
    Currently, submerged cultivation of the Bacillus anthracis STI-1 strain for live anthrax vaccine production requires liquid nutrient media, which have disadvantages of a short shelf life (no more than one month) and a narrow range of storage temperatures (2–8 Β°Π‘). Dry media, in contrast, have a number of indisputable advantages: such media are transportable and easy to use, have a standard capability to retain properties, and can be stored without preservatives at 2–30 Β°Π‘ for 2–5 years. The aim of this work was to develop a technology for the preparation of a dry nutrient medium for anthrax vaccine production. Materials and methods: The study used the Bacillus anthracis STI-1 vaccine strain and a nutrient medium for its cultivation, containing a 70:30 mixture of an enzymatic digest of casein and a pre-processed corn extract solution. Drying of the nutrient medium was carried out on a spray-drying unit. The authors evaluated physicochemical parameters of experimental medium batches. The shelf life was determined by an accelerated stability study. The dry nutrient medium was used to produce a live anthrax vaccine. Quality attributes of the vaccine were assessed for compliance with regulatory requirements. Results: The authors developed the dry media production technology. According to it, the liquid nutrient medium is fed to the drying unit at a rate of 20–25 dm3/h. The spray air pressure is 0.02 MPa. Temperatures at the drying chamber inlet and outlet are 118–122 Β°Π‘ and 85–90 Β°Π‘, respectively. The technology was used to obtain 3 experimental batches of the dry medium. The study results demonstrate that the technology is reproducible, and the tested quality attributes of experimental medium batches are consistent with the requirements. According to the accelerated stability study, the shelf life of the dry nutrient medium at 2–30 Β°Π‘ is at least 3 years. Experiments demonstrated the possibility of using the dry nutrient medium for live anthrax vaccine production. Critical quality attributes of the vaccine obtained with the medium met regulatory requirements. Conclusions: The developed technology allows for the production of a standard dry nutrient medium with a prolonged shelf life, which is convenient for live anthrax vaccine production

    ВозмоТности КВ-Π°Π½Π³ΠΈΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Π½ΠΈΠΆΠ½Π΅ΠΉ Π±Ρ€Ρ‹ΠΆΠ΅Π΅Ρ‡Π½ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ ΠΏΡ€ΠΈ ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ€Π΅Π·Π΅ΠΊΡ†ΠΈΠΉ Π»Π΅Π²ΠΎΠΉ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρ‹ толстой кишки Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½Ρ‹ΠΌ Ρ€Π°ΠΊΠΎΠΌ

    Get PDF
    During laparoscopic surgery for colorectal cancer, vascular structures may be incorrectly identified and damaged due to ignorance of the variant anatomy of the inferior mesenteric artery (IMA), lack of tactile sensations, narrowed field of vision, which leads to complications such as massive bleeding and intestinal ischemia. Therefore, the preoperative study of the variant anatomy of the IMA is of paramount importance. Knowing the variant anatomy of the vessels before surgery, you can make an operation plan in advance, which will ensure fast and safe vascular ligation at the required level and lymph dissection.Aim: To develop a classification of IMA variability for practical use in operations for colorectal cancer. Optimize the standard abdominal scanning protocol to improve the accuracy of MSCT and the best visualization of the IMA and its branches.Material and methods. From February 2013 to March 2022, 214 computed tomograms (CT) of abdominal organs with intravenous contrast were analyzed. We studied the variant anatomy of the IMA. The abdominal cavity scanning protocol was optimized using a 100 kV tube voltage, the contrast density of the NBA and its branches was compared using standard and optimized scanning protocols during a retrospective analysis of 105 CT studies of abdominal organs.Results. We proposed the classification of structure of the IMA and its branches. This is especially important when the safe lymph node dissection along the IMA is necessary. I type – several colonic branches derivate from the IMA by independent trunks (54%); II type – all colon branches derivate from the IMA in one point like a β€œgoose paw” (25%); III type – one colon branch departs from the IMA by a single trunk; then it divides into colonic branches (21%).The accuracy of MSCT of the abdominal organs with intravenous contrast, which was determined by comparing the results of studies with intraoperative data, was 97.9%. The sensitivity of the method is 95.8%, the specificity of the method is 100%.The use of a scanning protocol with a tube voltage of 100 kV makes it possible to simplify and speed up the determination of the anatomical type of structure, improve the visualization of the IMA and its branches.Conclusion. CT with 3D-reconstruction of vessels allows the surgeon to perform an extended LND for colorectal cancer with a minimal risk of complications.Π’ΠΎ врСмя лапароскопичСской ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ° сосудистыС структуры ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΈ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Ρ‹ ΠΈΠ·-Π·Π° нСзнания Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½ΠΎΠΉ Π°Π½Π°Ρ‚ΠΎΠΌΠΈΠΈ Π½ΠΈΠΆΠ½Π΅ΠΉ Π±Ρ€Ρ‹ΠΆΠ΅Π΅Ρ‡Π½ΠΎΠΉ Π°Ρ€Ρ‚Π΅Ρ€ΠΈΠΈ (НБА), отсутствия Ρ‚Π°ΠΊΡ‚ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‰ΡƒΡ‰Π΅Π½ΠΈΠΉ, суТСнного поля зрСния, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ‚Π°ΠΊΠΈΠΌ ослоТнСниям, ΠΊΠ°ΠΊ массивноС ΠΊΡ€ΠΎΠ²ΠΎΡ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΈ ишСмия ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ°. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€Π΅Π΄ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½ΠΎΠΉ Π°Π½Π°Ρ‚ΠΎΠΌΠΈΠΈ НБА ΠΈΠΌΠ΅Π΅Ρ‚ пСрвостСпСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. Зная Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½ΡƒΡŽ Π°Π½Π°Ρ‚ΠΎΠΌΠΈΡŽ сосудов ΠΏΠ΅Ρ€Π΅Π΄ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ, ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Ρ€Π°Π½Π΅Π΅ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΏΠ»Π°Π½ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, Ρ‡Ρ‚ΠΎ обСспСчит Π±Ρ‹ΡΡ‚Ρ€ΡƒΡŽ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΡƒΡŽ пСрСвязку сосудов Π½Π° Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ ΠΈ Π»ΠΈΠΌΡ„ΠΎΠ΄ΠΈΡΡΠ΅ΠΊΡ†ΠΈΡŽ.ЦСль исслСдования: Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ ΠΊΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ Π²Π°Ρ€ΠΈΠ°Π±Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ НБА для практичСского примСнСния ΠΏΡ€ΠΈ опСрациях ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρƒ ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°ΠΊΠ°. ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ стандартный ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ» сканирования Π±Ρ€ΡŽΡˆΠ½ΠΎΠΉ полости для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ точности МБКВ ΠΈ Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠ΅ΠΉ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ НБА ΠΈ Π΅Π΅ Π²Π΅Ρ‚Π²Π΅ΠΉ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π‘ фСвраля 2013 Π³. ΠΏΠΎ ΠΌΠ°Ρ€Ρ‚ 2022 Π³. ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ 214 ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Ρ… Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°ΠΌΠΌ ΠΎΡ€Π³Π°Π½ΠΎΠ² Π±Ρ€ΡŽΡˆΠ½ΠΎΠΉ полости с Π²Π½ΡƒΡ‚Ρ€ΠΈΠ²Π΅Π½Π½Ρ‹ΠΌ контрастированиСм. Π˜Π·ΡƒΡ‡ΠΈΠ»ΠΈ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½ΡƒΡŽ Π°Π½Π°Ρ‚ΠΎΠΌΠΈΡŽ НБА. ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ» сканирования ΠΎΡ€Π³Π°Π½ΠΎΠ² Π±Ρ€ΡŽΡˆΠ½ΠΎΠΉ полости с использованиСм напряТСния Ρ‚Ρ€ΡƒΠ±ΠΊΠΈ 100 ΠΊΠ’, сравнили ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ контрастирования НБА ΠΈ Π΅Π΅ Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΡ€ΠΈ использовании стандартного ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»ΠΎΠ² сканирования ΠΏΡ€ΠΈ рСтроспСктивном Π°Π½Π°Π»ΠΈΠ·Π΅ 105 КВ-исслСдований ΠΎΡ€Π³Π°Π½ΠΎΠ² Π±Ρ€ΡŽΡˆΠ½ΠΎΠΉ полости.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚. Нами Π±Ρ‹Π»Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° классификация строСния НБА ΠΈ Π΅Π΅ Π²Π΅Ρ‚Π²Π΅ΠΉ. Данная классификация ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½Π° ΠΏΡ€ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ лимфодиссСкции вдоль основного ствола НБА. Π’ΠΈΠΏ I – нСсколько Ρ‚ΠΎΠ»ΡΡ‚ΠΎΠΊΠΈΡˆΠ΅Ρ‡Π½Ρ‹Ρ… Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΎΡ‚Ρ…ΠΎΠ΄ΠΈΠ»ΠΈ ΠΎΡ‚ НБА ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ стволами (54%); Ρ‚ΠΈΠΏ II – всС Ρ‚ΠΎΠ»ΡΡ‚ΠΎΠΊΠΈΡˆΠ΅Ρ‡Π½Ρ‹Π΅ Π²Π΅Ρ‚Π²ΠΈ отходят ΠΎΡ‚ НБА ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π² Π²ΠΈΠ΄Π΅ β€œΠ³ΡƒΡΠΈΠ½ΠΎΠΉ лапки” (25%); Ρ‚ΠΈΠΏ III – ΠΎΡ‚ НБА ΠΎΡ‚Ρ…ΠΎΠ΄ΠΈΡ‚ СдинствСнный ствол, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π° своСм протяТСнии дСлится Π½Π° Ρ‚ΠΎΠ»ΡΡ‚ΠΎΠΊΠΈΡˆΠ΅Ρ‡Π½Ρ‹Π΅ Π²Π΅Ρ‚Π²ΠΈ (21%).Π’ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ МБКВ ΠΎΡ€Π³Π°Π½ΠΎΠ² Π±Ρ€ΡŽΡˆΠ½ΠΎΠΉ полости с Π²Π½ΡƒΡ‚Ρ€ΠΈΠ²Π΅Π½Π½Ρ‹ΠΌ контрастированиСм, которая ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»Π°ΡΡŒ ΠΏΡƒΡ‚Π΅ΠΌ сравнСния Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² исслСдований с ΠΈΠ½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ, составила 97,9%, Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° – 95,8%, ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ – 100%.ИспользованиС ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° сканирования с напряТСниСм Ρ‚Ρ€ΡƒΠ±ΠΊΠΈ 100 ΠΊΠ’ позволяСт ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ ΠΈ ΡƒΡΠΊΠΎΡ€ΠΈΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ анатомичСского Ρ‚ΠΈΠΏΠ° строСния, ΡƒΠ»ΡƒΡ‡ΡˆΠΈΡ‚ΡŒ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ НБА ΠΈ Π΅Π΅ Π²Π΅Ρ‚Π²Π΅ΠΉ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. КВ с 3D-рСконструкциСй сосудов позволяСт Ρ…ΠΈΡ€ΡƒΡ€Π³Ρƒ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½Π½ΡƒΡŽ Π»ΠΈΠΌΡ„ΠΎΠ΄ΠΈΡΡΠ΅ΠΊΡ†ΠΈΡŽ ΠΏΡ€ΠΈ ΠΊΠΎΠ»ΠΎΡ€Π΅ΠΊΡ‚Π°Π»ΡŒΠ½ΠΎΠΌ Ρ€Π°ΠΊΠ΅ с ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ риском ослоТнСний

    Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ приготовлСния сухой ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ срСды для производства сибирСязвСнной Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹

    Get PDF
    Currently, submerged cultivation of the Bacillus anthracis STI-1 strain for live anthrax vaccine production requires liquid nutrient media, which have disadvantages of a short shelf life (no more than one month) and a narrow range of storage temperatures (2–8 Β°Π‘). Dry media, in contrast, have a number of indisputable advantages: such media are transportable and easy to use, have a standard capability to retain properties, and can be stored without preservatives at 2–30 Β°Π‘ for 2–5 years. The aim of this work was to develop a technology for the preparation of a dry nutrient medium for anthrax vaccine production. Materials and methods: The study used the Bacillus anthracis STI-1 vaccine strain and a nutrient medium for its cultivation, containing a 70:30 mixture of an enzymatic digest of casein and a pre-processed corn extract solution. Drying of the nutrient medium was carried out on a spray-drying unit. The authors evaluated physicochemical parameters of experimental medium batches. The shelf life was determined by an accelerated stability study. The dry nutrient medium was used to produce a live anthrax vaccine. Quality attributes of the vaccine were assessed for compliance with regulatory requirements. Results: The authors developed the dry media production technology. According to it, the liquid nutrient medium is fed to the drying unit at a rate of 20–25 dm3/h. The spray air pressure is 0.02 MPa. Temperatures at the drying chamber inlet and outlet are 118–122 Β°Π‘ and 85–90 Β°Π‘, respectively. The technology was used to obtain 3 experimental batches of the dry medium. The study results demonstrate that the technology is reproducible, and the tested quality attributes of experimental medium batches are consistent with the requirements. According to the accelerated stability study, the shelf life of the dry nutrient medium at 2–30 Β°Π‘ is at least 3 years. Experiments demonstrated the possibility of using the dry nutrient medium for live anthrax vaccine production. Critical quality attributes of the vaccine obtained with the medium met regulatory requirements. Conclusions: The developed technology allows for the production of a standard dry nutrient medium with a prolonged shelf life, which is convenient for live anthrax vaccine production.Π’ настоящСС врСмя ΠΏΡ€ΠΈ производствС Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ сибирСязвСнной ΠΆΠΈΠ²ΠΎΠΉ для Π³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΠ³ΠΎ выращивания ΡˆΡ‚Π°ΠΌΠΌΠ° Bacillus anthracis БВИ-1 ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Тидкая ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ срСда, нСдостатками ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠ°Π»Ρ‹ΠΉ срок годности β€” Π½Π΅ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ мСсяца ΠΈ ΡƒΠ·ΠΊΠΈΠΉ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π΅Π΅ хранСния: ΠΎΡ‚ 2 Π΄ΠΎ 8 Β°Π‘. Π‘ΡƒΡ…ΠΈΠ΅ ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ срСды (ПБ) ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ рядом нСоспоримых прСимущСств: ΠΈΡ… ΠΌΠΎΠΆΠ½ΠΎ Ρ…Ρ€Π°Π½ΠΈΡ‚ΡŒ ΠΎΡ‚ 2 Π΄ΠΎ 5 Π»Π΅Ρ‚ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΎΡ‚ 2 Π΄ΠΎ 30 Β°Π‘ Π±Π΅Π· консСрвантов; ΠΎΠ½ΠΈ Ρ‚Ρ€Π°Π½ΡΠΏΠΎΡ€Ρ‚Π°Π±Π΅Π»ΡŒΠ½Ρ‹, ΡƒΠ΄ΠΎΠ±Π½Ρ‹ Π² ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΈ стандартны Π² сохранСнии свойств. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ приготовлСния сухой ПБ для производства сибирСязвСнной Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: Π² исслСдованиях использовали Π²Π°ΠΊΡ†ΠΈΠ½Π½Ρ‹ΠΉ ΡˆΡ‚Π°ΠΌΠΌ B. anthracis БВИ-1 ΠΈ ПБ, ΡΠΎΡΡ‚ΠΎΡΡ‰ΡƒΡŽ ΠΈΠ· смСси Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π°Ρ‚Π° ΠΊΠ°Π·Π΅ΠΈΠ½Π° ΠΈ раствора ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Π½ΠΎΠ³ΠΎ экстракта Π² ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ 70 ΠΈ 30%, для ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ сибирСязвСнного ΠΌΠΈΠΊΡ€ΠΎΠ±Π°. ОбСзвоТиваниС ПБ осущСствляли Π½Π° установкС Ρ€Π°ΡΠΏΡ‹Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ сСрии сухой ПБ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСским показатСлям Π½Π° соотвСтствиС трСбованиям Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ. Π‘Ρ€ΠΎΠΊ годности опрСдСляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ «ускорСнного старСния». Π‘ использованиСм сухой ПБ Π³ΠΎΡ‚ΠΎΠ²ΠΈΠ»ΠΈ Π²Π°ΠΊΡ†ΠΈΠ½Ρƒ ΡΠΈΠ±ΠΈΡ€Π΅ΡΠ·Π²Π΅Π½Π½ΡƒΡŽ ΠΆΠΈΠ²ΡƒΡŽ ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΎΡ†Π΅Π½ΠΊΡƒ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ качСства ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Π½Π° соотвСтствиС трСбованиям Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° тСхнология приготовлСния сухой ПБ (ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ΄Π°Ρ‡ΠΈ ПБ Π½Π° ΡΡƒΡˆΠΊΡƒ ΠΎΡ‚ 20 Π΄ΠΎ 25 Π΄ΠΌ3/Ρ‡, Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ сТатого Π²ΠΎΠ·Π΄ΡƒΡ…Π° Π² распылитСлС 0,02 МПа, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° Π²ΠΎΠ·Π΄ΡƒΡ…Π° Π½Π° Π²Ρ…ΠΎΠ΄Π΅ Π² ΡΡƒΡˆΠΈΠ»ΡŒΠ½ΡƒΡŽ ΠΊΠ°ΠΌΠ΅Ρ€Ρƒ ΠΎΡ‚ 118 Π΄ΠΎ 122 Β°Π‘, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° Π²ΠΎΠ·Π΄ΡƒΡ…Π° Π½Π° Π²Ρ‹Ρ…ΠΎΠ΄Π΅ β€” ΠΎΡ‚ 85 Π΄ΠΎ 90 Β°Π‘). По этой Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ 3 сСрии ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ сухой ПБ. Показано, Ρ‡Ρ‚ΠΎ разработанная тСхнология воспроизводима, Π° ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ сСрии сухой ПБ ΠΏΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ показатСлям ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‚ ΠΏΡ€Π΅Π΄ΡŠΡΠ²Π»ΡΠ΅ΠΌΡ‹ΠΌ трСбованиям. Π‘Ρ€ΠΎΠΊ годности сухой ПБ, установлСнный с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄Π° «ускорСнного старСния», Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 3 Π»Π΅Ρ‚ ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ хранСния ΠΎΡ‚ 2 Π΄ΠΎ 30 Β°Π‘. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ использования сухой ПБ Π² Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ производства сибирСязвСнной Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹. ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹ΠΉ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ ΠΏΠΎ основным показатСлям качСства ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ трСбованиям Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: разработанная тСхнология позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΡΡƒΡ…ΡƒΡŽ ПБ ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½ΡƒΡŽ с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΌ сроком хранСния ΠΈ ΡƒΠ΄ΠΎΠ±Π½ΡƒΡŽ ΠΏΡ€ΠΈ использовании Π² производствС Π²Π°ΠΊΡ†ΠΈΠ½Ρ‹ сибирСязвСнной ΠΆΠΈΠ²ΠΎΠΉ

    INVESTIGATION OF CO-TRIMOXAZOLE EFFICIENCY USING THE EXPERIMENTAL TUBERCULOSIS MODEL IN MICE CAUSED BY TUBERCULOUS MYCOBACTERIA WITHΒ EXTENSIVE DRUG RESISTANCE

    No full text
    The efficiency of using co-trimoxazole for treatment of mice infected with tuberculous mycobacteria with extensive drug resistance and supposed sensitivity to co-trimoxazole have been investigated.The study of 78 clinical cultures of tuberculous mycobacteria has demonstrated that drug resistance to first line drugs (cases with multiple drug resistance – MDR) can be accompanied by the expansion of polymorphism in the part of drug susceptibility to co-trimoxazole, thus this drug can be used as an additional drug in the treatment of M/XDR tuberculosis patients. Using co-trimoxazole as an additional drug to isoniazid in the model of generalized tuberculosis in mice infected with Beijing strain with XDR reduced the bacterial load of the lungs by 10 times.Detail evaluation of drug susceptibility/resistance of tuberculous mycobacteria to the additional drug of co-trimoxazole and investigation of the interaction of this drug with other agents included into treatment regimens IV and V can form the basis for improvement of treatment regimens for M/XDR tuberculosis patients with specification of doses and frequency of drug in-takes for each specific case

    Adding cystatin C to the GRACE scale improves the prediction of bleeding complications in non-invasively treated patients with acute coronary syndrome

    Get PDF
    Aim. To assess the prognostic performance of the GRACE scale extended by cystatin C levels in the prediction of ischemic and hemorrhagic in-hospital complications among patients with acute coronary syndrome (ACS). Material and methods. In 160 ACS patients, admitted to the Moscow City Clinical Hospital No. 29 and included in the hospital register, blood levels of cystatin C were measured within the first 24 hours from admission. All patients were treated conservatively. The in-hospital risk of mortality and bleeding was assessed. The cut-off level of cystatin C was 1,53 mg/l. Results. High levels of cystatin C, high GRACE scale risk, and their combination were associated with a significant increase in the in-hospital risk of hemorrhagic and ischemic complications. Independent mortality predictors included GRACE levels (odds ratio, OR, 1,05; 95% confidence interval (CI) 1,02-1,08; p=0,002) and cystatin C levels (OR 1,01; 95% CI 1,00-1,02: p=0,025). Major and moderate bleeding complications were independently predicted by fibrinolysis (OR 9,86; 95% CI 1,74-55,20; p=0,01), leukocyte levels (OR 1,34; 95% CI 1,11-1,62: p=0,002), and haemoglobin levels (OR 0,96; 95% CI 0,91-0,99; p=0,043), as well as the combination of high GRACE risk levels and elevated cystatin C levels (OR 11,78; 95% CI 1,95-71,06; p=0,007). Adding cystatin C to the high GRACE risk improved the prognostic specificity by approximately 20% and did not affect the prognostic sensitivity in the prediction of in-hospital risk of major and moderate bleeding complications. Conclusion. The combination of high GRACE risk levels and elevated cystatin C levels was an independent predictor of major and moderate in-hospital bleeding complications, but not in-hospital death. Adding cystatin C to the GRACE scale by approximately 20% increased its specificity for the prediction of in-hospital risk of major and moderate bleeding complications
    corecore