14 research outputs found
The Charge Form Factor of the Neutron at Low Momentum Transfer from the Reaction
We report new measurements of the neutron charge form factor at low momentum
transfer using quasielastic electrodisintegration of the deuteron.
Longitudinally polarized electrons at an energy of 850 MeV were scattered from
an isotopically pure, highly polarized deuterium gas target. The scattered
electrons and coincident neutrons were measured by the Bates Large Acceptance
Spectrometer Toroid (BLAST) detector. The neutron form factor ratio
was extracted from the beam-target vector asymmetry
at four-momentum transfers , 0.20, 0.29 and 0.42
(GeV/c).Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let
Measurement of the proton electric to magnetic form factor ratio from \vec ^1H(\vec e, e'p)
We report the first precision measurement of the proton electric to magnetic
form factor ratio from spin-dependent elastic scattering of longitudinally
polarized electrons from a polarized hydrogen internal gas target. The
measurement was performed at the MIT-Bates South Hall Ring over a range of
four-momentum transfer squared from 0.15 to 0.65 (GeV/c).
Significantly improved results on the proton electric and magnetic form factors
are obtained in combination with previous cross-section data on elastic
electron-proton scattering in the same region.Comment: 4 pages, 2 figures, submitted to PR
Measurement of the Vector and Tensor Asymmetries at Large Missing Momentum in Quasielastic (\u3cem\u3ee\u3c/em\u3e\u3csup\u3e→\u3c/sup\u3e,\u3cem\u3ee\u27p\u3c/em\u3e Electron Scattering from Deuterium
We report the measurement of the beam-vector and tensor asymmetries AVed and ATd in quasielastic (e→,e′p) electrodisintegration of the deuteron at the MIT-Bates Linear Accelerator Center up to missing momentum of 500  MeV/c. Data were collected simultaneously over a momentum transfer range 0.1 \u3c Q2 \u3c 0.5  (GeV/c)2 with the Bates Large Acceptance Spectrometer Toroid using an internal deuterium gas target polarized sequentially in both vector and tensor states. The data are compared with calculations. The beam-vector asymmetry AVed is found to be directly sensitive to the D-wave component of the deuteron and has a zero crossing at a missing momentum of about 320  MeV/c, as predicted. The tensor asymmetry ATd at large missing momentum is found to be dominated by the influence of the tensor force in the neutron-proton final-state interaction. The new data provide a strong constraint on theoretical models
Recommended from our members
Small Molecule Targeting of Specific BAF (mSWI/SNF) Complexes for HIV Latency Reversal
The persistence of a pool of latently HIV-1-infected cells despite combination anti-retroviral therapy treatment is the major roadblock for a cure. The BAF (mammalian SWI/SNF) chromatin remodeling complex is involved in establishing and maintaining viral latency, making it an attractive drug target for HIV-1 latency reversal. Here we report a high-throughput screen for inhibitors of BAF-mediated transcription in cells and the subsequent identification of a 12-membered macrolactam. This compound binds ARID1A-specific BAF complexes, prevents nucleosomal positioning, and relieves transcriptional repression of HIV-1. Through this mechanism, these compounds are able to reverse HIV-1 latency in an in vitro T cell line, an ex vivo primary cell model of HIV-1 latency, and in patient CD4+ T cells without toxicity or T cell activation. These macrolactams represent a class of latency reversal agents with unique mechanism of action, and can be combined with other latency reversal agents to improve reservoir targeting
Precise Measurement of Deuteron Tensor Analyzing Powers with BLAST
We report a precision measurement of the deuteron tensor analyzing powers T[subscript 20] and T[subscript 21] at the MIT-Bates Linear Accelerator Center. Data were collected simultaneously over a momentum transfer range Q=2.15–4.50  fm[superscript -1] with the Bates Large Acceptance Spectrometer Toroid using a highly polarized deuterium internal gas target. The data are in excellent agreement with calculations in a framework of effective field theory. The deuteron charge monopole and quadrupole form factors G[subscript C] and G[subscript Q] were separated with improved precision, and the location of the first node of G[subscript C] was confirmed at Q=4.19±0.05  fm[superscript -1]. The new data provide a strong constraint on theoretical models in a momentum transfer range covering the minimum of T[subscript 20] and the first node of G[subscript C].National Science Foundation (U.S.)United States. Dept. of Energ
The BLAST experiment
The Bates large acceptance spectrometer toroid (BLAST) experiment was operated at the MIT-Bates Linear Accelerator Center from 2003 until 2005. The detector and experimental program were designed to study, in a systematic manner, the spin-dependent electromagnetic interaction in few-nucleon systems. As such the data will provide improved measurements for neutron, proton, and deuteron form factors. The data will also allow details of the reaction mechanism, such as the role of final state interactions, pion production, and resonances to be studied. The experiment used: a longitudinally polarized electron beam stored in the South Hall Storage Ring; a highly polarized, isotopically pure, internal gas target of hydrogen or deuterium provided by an atomic beam source; and a symmetric, general purpose detector based on a toroidal spectrometer with tracking, time-of-flight, Cherenkov, and neutron detectors. Details of the experiment and operation are presented. © 2009 Elsevier B.V. All rights reserved