10,173 research outputs found
BDDC and FETI-DP under Minimalist Assumptions
The FETI-DP, BDDC and P-FETI-DP preconditioners are derived in a particulary
simple abstract form. It is shown that their properties can be obtained from
only on a very small set of algebraic assumptions. The presentation is purely
algebraic and it does not use any particular definition of method components,
such as substructures and coarse degrees of freedom. It is then shown that
P-FETI-DP and BDDC are in fact the same. The FETI-DP and the BDDC
preconditioned operators are of the same algebraic form, and the standard
condition number bound carries over to arbitrary abstract operators of this
form. The equality of eigenvalues of BDDC and FETI-DP also holds in the
minimalist abstract setting. The abstract framework is explained on a standard
substructuring example.Comment: 11 pages, 1 figure, also available at
http://www-math.cudenver.edu/ccm/reports
Multispace and Multilevel BDDC
BDDC method is the most advanced method from the Balancing family of
iterative substructuring methods for the solution of large systems of linear
algebraic equations arising from discretization of elliptic boundary value
problems. In the case of many substructures, solving the coarse problem exactly
becomes a bottleneck. Since the coarse problem in BDDC has the same structure
as the original problem, it is straightforward to apply the BDDC method
recursively to solve the coarse problem only approximately. In this paper, we
formulate a new family of abstract Multispace BDDC methods and give condition
number bounds from the abstract additive Schwarz preconditioning theory. The
Multilevel BDDC is then treated as a special case of the Multispace BDDC and
abstract multilevel condition number bounds are given. The abstract bounds
yield polylogarithmic condition number bounds for an arbitrary fixed number of
levels and scalar elliptic problems discretized by finite elements in two and
three spatial dimensions. Numerical experiments confirm the theory.Comment: 26 pages, 3 figures, 2 tables, 20 references. Formal changes onl
Interference fringes with maximal contrast at finite coherence time
Interference fringes can result from the measurement of four-time fourth-order correlation functions of a wave field. These fringes have a statistical origin and, as a consequence, they show the greatest contrast when the coherence time of the field is finite. A simple acoustic experiment is presented in which these fringes are observed, and it is demonstrated that the contrast is maximal for partial coherence. Random telegraph phase noise is used to vary the field coherence in order to highlight the problem of interpreting this interference; for this noise, the Gaussian moment theorem may not be invoked to reduce the description of the interference to one in terms of first-order interference.M.W. Hamilto
Studies of waveform requirements for intermediate mass-ratio coalescence searches with advanced detectors
The coalescence of a stellar-mass compact object into an intermediate-mass
black hole (intermediate mass-ratio coalescence; IMRAC) is an important
astrophysical source for ground-based gravitational-wave interferometers in the
so-called advanced configuration. However, the ability to carry out effective
matched-filter based searches for these systems is limited by the lack of
reliable waveforms. Here we consider binaries in which the intermediate-mass
black hole has mass in the range 24 - 200 solar masses with a stellar-mass
companion having masses in the range 1.4 - 18.5 solar masses. In addition, we
constrain the mass ratios, q, of the binaries to be in the range 1/140 < q <
1/10 and we restrict our study to the case of circular binaries with
non-spinning components. We investigate the relative contribution to the
signal-to-noise ratio (SNR) of the three different phases of the coalescence:
inspiral, merger and ringdown. We show that merger and ringdown contribute to a
substantial fraction of the total SNR over a large portion of the mass
parameter space, although in a limited portion the SNR is dominated by the
inspiral phase. We further identify three regions in the IMRAC mass-space in
which: (i) inspiral-only searches could be performed with losses in detection
rates L in the range 10% < L < 27%, (ii) searches based on inspiral-only
templates lead to a loss in detection rates in the range 27% < L < 50%$, and
(iii) templates that include merger and ringdown are essential to prevent
losses in detection rates greater than 50%. We investigate the effectiveness
with which the inspiral-only portion of the IMRAC waveform space is covered by
comparing several existing waveform families in this regime. Our results
reinforce the importance of extensive numerical relativity simulations of
IMRACs and the need for further studies of suitable approximation schemes in
this mass range.Comment: 10 pages, 3 figure
Spatial quantum correlations in multiple scattered light
We predict a new spatial quantum correlation in light propagating through a
multiple scattering random medium. The correlation depends on the quantum state
of the light illuminating the medium, is infinite range, and dominates over
classical mesoscopic intensity correlations. The spatial quantum correlation is
revealed in the quantum fluctuations of the total transmission or reflection
through the sample and should be readily observable experimentally.Comment: Reference adde
On Influence of Intensive Stationary Electromagnetic Field on the Behavior of Fermionic Systems
Exact solutions of Schroedinger and Pauli equations for charged particles in
an external stationary electromagnetic field of an arbitrary configuration are
constructed. Green functions of scalar and spinor particles are calculated in
this field. The corresponding equations for complex energy of particles bounded
by short range potential are deduced. Boundary condition typical for delta -
potential is not used in the treatment. Explicit analytical expressions are
given for the shift and width of a quasistationary level for different
configurations of the external field. The critical value of electric field in
which the idea of quasistationary level becomes meaningless is calculated. It
is shown that the common view on the stabilizing role of magnetic field
concerns only scalar particles.Comment: 15 pages, no figures, LaTeX2
Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields
In the previous paper [M. Tsang, Phys. Rev. A 81, 063837 (2010), e-print
arXiv:1003.0116], I proposed a quantum model of a cavity electro-optic
modulator, which can coherently couple an optical cavity mode to a microwave
resonator mode and enable novel quantum operations on the two modes, including
laser cooling of the microwave mode, electro-optic entanglement, and
backaction-evading optical measurement of a microwave quadrature. In this
sequel, I focus on the quantum input-output relations between traveling optical
and microwave fields coupled to a cavity electro-optic modulator. With
red-sideband optical pumping, the relations are shown to resemble those of a
beam splitter for the traveling fields, so that in the ideal case of zero
parasitic loss and critical coupling, microwave photons can be coherently
up-converted to "flying" optical photons with unit efficiency, and vice versa.
With blue-sideband pumping, the modulator acts as a nondegenerate parametric
amplifier, which can generate two-mode squeezing and hybrid entangled photon
pairs at optical and microwave frequencies. These fundamental operations
provide a potential bridge between circuit quantum electrodynamics and quantum
optics.Comment: 12 pages, 10 figures, v2: updated and submitte
In-depth Chandra study of the AGN feedback in Virgo elliptical galaxy M84
Using deep Chandra observations of M84 we study the energetics of the
interaction between the black hole and the interstellar medium of this
early-type galaxy. We perform a detailed two dimensional reconstruction of the
properties of the X-ray emitting gas using a constrained Voronoi tessellation
method, identifying the mean trends and carrying out the fluctuation analysis
of the thermodynamical properties of the hot ISM. In addition to the PV work
associated with the bubble expansion, we identify and measure the wave energy
associated with the mildly supersonic bubble expansion. We show that, depending
on the age of the cavity and the associated wave, the waves can have a
substantial contribution to the total energy release from the AGN. The energy
dissipated in the waves tends to be concentrated near the center of M84 and in
the direction perpendicular to the bubble outflow, possibly due to the
interference of the waves generated by the expansion of northern and southern
bubbles. We also find direct evidence for the escape of radio plasma from the
ISM of the host galaxy into the intergalactic medium.Comment: 6 pages, ApJ in press, Nov. 1 200
- …