8,049 research outputs found
Steady-state Ab Initio Laser Theory: Generalizations and Analytic Results
We improve the steady-state ab initio laser theory (SALT) of Tureci et al. by
expressing its fundamental self-consistent equation in a basis set of threshold
constant flux states that contains the exact threshold lasing mode. For
cavities with non-uniform index and/or non-uniform gain, the new basis set
allows the steady-state lasing properties to be computed with much greater
efficiency. This formulation of the SALT can be solved in the single-pole
approximation, which gives the intensities and thresholds, including the
effects of nonlinear hole-burning interactions to all orders, with negligible
computational effort. The approximation yields a number of analytic
predictions, including a "gain-clamping" transition at which strong modal
interactions suppress all higher modes. We show that the single-pole
approximation agrees well with exact SALT calculations, particularly for high-Q
cavities. Within this range of validity, it provides an extraordinarily
efficient technique for modeling realistic and complex lasers.Comment: 17 pages, 11 figure
PT-Symmetric Electronics
We show both theoretically and experimentally that a pair of inductively
coupled active LRC circuits (dimer), one with amplification and another with an
equivalent amount of attenuation, display all the features which characterize a
wide class of non-Hermitian systems which commute with the joint parity-time PT
operator: typical normal modes, temporal evolution, and scattering processes.
Utilizing a Liouvilian formulation, we can define an underlying PT-symmetric
Hamiltonian, which provides important insight for understanding the behavior of
the system. When the PT-dimer is coupled to transmission lines, the resulting
scattering signal reveals novel features which reflect the PT-symmetry of the
scattering target. Specifically we show that the device can show two different
behaviors simultaneously, an amplifier or an absorber, depending on the
direction and phase relation of the interrogating waves. Having an exact
theory, and due to its relative experimental simplicity, PT-symmetric
electronics offers new insights into the properties of PT-symmetric systems
which are at the forefront of the research in mathematical physics and related
fields.Comment: 17 pages, 7 figure
Composting paper and grass clippings with anaerobically treated palm oil mill effluent
Purpose The purpose of this study is to investigate the composting performance of anaerobically treated palm oil mill effluent (AnPOME) mixed with paper and grass clippings. Methods Composting was conducted using a laboratory scale system for 40 days. Several parameters were determined: temperature, mass reduction, pH, electrical conductivity, colour, zeta potential, phytotoxicity and final compost nutrients. Results The moisture content and compost mass were reduced by 24 and 18 %, respectively. Both final compost pH value and electrical conductivity were found to increase in value. Colour (measured as PtCo) was not suitable as a maturity indicator. The negative zeta potential values decreased from −12.25 to −21.80 mV. The phytotoxicity of the compost mixture was found to decrease in value during the process and the final nutrient value of the compost indicates its suitability as a soil conditioner. Conclusions From this study, we conclude that the addition of paper and grass clippings can be a potential substrate to be composted with anaerobically treated palm oil mill effluent (AnPOME). The final compost produced is suitable for soil conditioner
A scalar field instability of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time
We study the stability of static as well as of rotating and charged black
holes in (4+1)-dimensional Anti-de Sitter space-time which possess spherical
horizon topology. We observe a non-linear instability related to the
condensation of a charged, tachyonic scalar field and construct "hairy" black
hole solutions of the full system of coupled Einstein, Maxwell and scalar field
equations. We observe that the limiting solution for small horizon radius is
either a hairy soliton solution or a singular solution that is not a regular
extremal solution. Within the context of the gauge/gravity duality the
condensation of the scalar field describes a holographic
conductor/superconductor phase transition on the surface of a sphere.Comment: 16 pages including 8 figures, v2: discussion on soliton solutions
extended; v3: matches version accepted for publication in JHE
A Bayesian nonparametric approach to dynamic item-response modeling: An application to the GUSTO cohort study
Statistical analysis of questionnaire data is often performed employing techniques from item-response theory. In this framework, it is possible to differentiate respondent profiles and characterize the questions (items) included in the questionnaire via interpretable parameters. These models are often crosssectional and aim at evaluating the performance of the respondents. The motivating application of this work is the analysis of psychometric questionnaires taken by a group of mothers at different time points and by their children at one later time point. The data are available through the GUSTO cohort study. To this end, we propose a Bayesian semiparametric model and extend the current literature by: (i) introducing temporal dependence among questionnaires taken at different time points; (ii) jointly modeling the responses to questionnaires taken from different, but related, groups of subjects (in our case mothers and children), introducing a further dependency structure and therefore sharing of information; (iii) allowing clustering of subjects based on their latent response profile. The proposed model is able to identify three main groups of mother/child pairs characterized by their response profiles. Furthermore, we report an interesting maternal reporting bias effect strongly affecting the clustering structure of the mother/child dyads
The scalars from the topcolor scenario and the spin correlations of the top pair production at the LHC
The topcolor scenario predicts the existences of some new scalars. In this
paper, we consider the contributions of these new particles to the observables,
which are related to the top quark pair () production at the LHC. It
is found that these new particles can generate significant corrections to the
production cross section and the spin correlations.Comment: 23 pages, 4 figures; discussions and references added; agrees with
published versio
Realization of Circular Slot Frequency Selective Surfaces using Photoplotter and Wet Etching Technique for Terahertz Material Sensing Applications
This paper discusses on the analysis of band pass Frequency Selective Surfaces (FSS) for performance enhancement in material sensing application. Terahertz Spectroscopy has proved to be versatile tool for detection and sensing in measuring non-conductive materials. It is because most of the non-conductive materials have unique molecular resonance that may translate as transmission and absorption of signals within terahertz range. However, the most critical issue in detection and sensing is to improve its sensitivity therefore an extremely low concentration material still can be able to be detected in THz band. Hence, in this paper, a circular slot is modeled on a planar structure of Rogers Duroid 5880LZ substrate with thickness of 508µm using Computer Simulation Technology (CST). The simulation generates a band pass response with transmission magnitude of 0.95 at 0.66THz. Furthermore, photoplotter and wet etching fabrication process is used for the realization of terahertz FSS. Simulated and measured transmission shows a good agreement between 0.5THz to 0.7THz as only 1% shifts in frequency between simulated and measured results. Besides that, the fabrication of circular FSS shows narrower measured bandwidth as compared to its simulated counterpart. Hence, with the limitation of the wet etching to produce micron size structure both simulation and measured result shows good agreement for all the critical issues in this study
Next-to-leading order QCD predictions for associated production at the CERN Large Hadron Collider
We present the calculations of the complete next-to-leading order (NLO) QCD
corrections (including supersymmetric QCD) to the inclusive total cross
sections of the associated production processes in the Minimal
Supersymmetric Standard Model at the CERN Large Hadron Collider. Both the
dimensional regularization scheme and the dimensional reduction scheme are used
to organize the calculations which yield the same NLO rates. The NLO correction
can either enhance or reduce the total cross sections, but it generally
efficiently reduces the dependence of the total cross sections on the
renormalization/factorization scale. We also examine the uncertainty of the
total cross sections due to the parton distribution function uncertainties.Comment: 53 pages, 20 figures; the alpha_s in Eq.(70) is now evaluated at
M_SUSY scale, not the \mu_r scale; numerical results updated, typos
corrected; version to appear in PR
Maternal Dietary Patterns and Gestational Diabetes Mellitus in a Multi-Ethnic Asian Cohort: The GUSTO Study
10.3390/nu8090574Nutrients89article no. 574GUSTO (Growing up towards Healthy Outcomes
Thermodynamical Metrics and Black Hole Phase Transitions
An important phase transition in black hole thermodynamics is associated with
the divergence of the specific heat with fixed charge and angular momenta, yet
one can demonstrate that neither Ruppeiner's entropy metric nor Weinhold's
energy metric reveals this phase transition. In this paper, we introduce a new
thermodynamical metric based on the Hessian matrix of several free energy. We
demonstrate, by studying various charged and rotating black holes, that the
divergence of the specific heat corresponds to the curvature singularity of
this new metric. We further investigate metrics on all thermodynamical
potentials generated by Legendre transformations and study correspondences
between curvature singularities and phase transition signals. We show in
general that for a system with n-pairs of intensive/extensive variables, all
thermodynamical potential metrics can be embedded into a flat (n,n)-dimensional
space. We also generalize the Ruppeiner metrics and they are all conformal to
the metrics constructed from the relevant thermodynamical potentials.Comment: Latex, 25 pages, reference added, typos corrected, English polished
and the Hawking-Page phase transition clarified; to appear in JHE
- …