168 research outputs found

    Large Deviations of the Smallest Eigenvalue of the Wishart-Laguerre Ensemble

    Full text link
    We consider the large deviations of the smallest eigenvalue of the Wishart-Laguerre Ensemble. Using the Coulomb gas picture we obtain rate functions for the large fluctuations to the left and the right of the hard edge. Our findings are compared with known exact results for ÎČ=1\beta=1 finding good agreement. We also consider the case of almost square matrices finding new universal rate functions describing large fluctuations.Comment: 4 pages, 2 figure

    Eigenvalue distributions for some correlated complex sample covariance matrices

    Full text link
    The distributions of the smallest and largest eigenvalues for the matrix product Z†ZZ^\dagger Z, where ZZ is an n×mn \times m complex Gaussian matrix with correlations both along rows and down columns, are expressed as m×mm \times m determinants. In the case of correlation along rows, these expressions are computationally more efficient than those involving sums over partitions and Schur polynomials reported recently for the same distributions.Comment: 11 page

    Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices

    Full text link
    We derive exact analytic expressions for the distributions of eigenvalues and singular values for the product of an arbitrary number of independent rectangular Gaussian random matrices in the limit of large matrix dimensions. We show that they both have power-law behavior at zero and determine the corresponding powers. We also propose a heuristic form of finite size corrections to these expressions which very well approximates the distributions for matrices of finite dimensions.Comment: 13 pages, 3 figure

    Spectral Density of Sparse Sample Covariance Matrices

    Full text link
    Applying the replica method of statistical mechanics, we evaluate the eigenvalue density of the large random matrix (sample covariance matrix) of the form J=ATAJ = A^{\rm T} A, where AA is an M×NM \times N real sparse random matrix. The difference from a dense random matrix is the most significant in the tail region of the spectrum. We compare the results of several approximation schemes, focusing on the behavior in the tail region.Comment: 22 pages, 4 figures, minor corrections mad

    Random matrix techniques in quantum information theory

    Get PDF
    The purpose of this review article is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review, combined with more detailed examples -- coming from research projects in which the authors were involved. We focus on two main topics, random quantum states and random quantum channels. We present results related to entropic quantities, entanglement of typical states, entanglement thresholds, the output set of quantum channels, and violations of the minimum output entropy of random channels

    Spectra of sparse non-Hermitian random matrices: an analytical solution

    Full text link
    We present the exact analytical expression for the spectrum of a sparse non-Hermitian random matrix ensemble, generalizing two classical results in random-matrix theory: this analytical expression forms a non-Hermitian version of the Kesten-Mckay law as well as a sparse realization of Girko's elliptic law. Our exact result opens new perspectives in the study of several physical problems modelled on sparse random graphs. In this context, we show analytically that the convergence rate of a transport process on a very sparse graph depends upon the degree of symmetry of the edges in a non-monotonous way.Comment: 5 pages, 5 figures, 12 pages supplemental materia

    Spectra of Empirical Auto-Covariance Matrices

    Full text link
    We compute spectra of sample auto-covariance matrices of second order stationary stochastic processes. We look at a limit in which both the matrix dimension NN and the sample size MM used to define empirical averages diverge, with their ratio α=N/M\alpha=N/M kept fixed. We find a remarkable scaling relation which expresses the spectral density ρ(λ)\rho(\lambda) of sample auto-covariance matrices for processes with dynamical correlations as a continuous superposition of appropriately rescaled copies of the spectral density ρα(0)(λ)\rho^{(0)}_\alpha(\lambda) for a sequence of uncorrelated random variables. The rescaling factors are given by the Fourier transform C^(q)\hat C(q) of the auto-covariance function of the stochastic process. We also obtain a closed-form approximation for the scaling function ρα(0)(λ)\rho^{(0)}_\alpha(\lambda). This depends on the shape parameter α\alpha, but is otherwise universal: it is independent of the details of the underlying random variables, provided only they have finite variance. Our results are corroborated by numerical simulations using auto-regressive processes.Comment: 4 pages, 2 figure

    Statistical mechanical analysis of the linear vector channel in digital communication

    Full text link
    A statistical mechanical framework to analyze linear vector channel models in digital wireless communication is proposed for a large system. The framework is a generalization of that proposed for code-division multiple-access systems in Europhys. Lett. 76 (2006) 1193 and enables the analysis of the system in which the elements of the channel transfer matrix are statistically correlated with each other. The significance of the proposed scheme is demonstrated by assessing the performance of an existing model of multi-input multi-output communication systems.Comment: 15 pages, 2 figure

    Two remarks on generalized entropy power inequalities

    Full text link
    This note contributes to the understanding of generalized entropy power inequalities. Our main goal is to construct a counter-example regarding monotonicity and entropy comparison of weighted sums of independent identically distributed log-concave random variables. We also present a complex analogue of a recent dependent entropy power inequality of Hao and Jog, and give a very simple proof.Comment: arXiv:1811.00345 is split into 2 papers, with this being on

    Perceptron capacity revisited: classification ability for correlated patterns

    Full text link
    In this paper, we address the problem of how many randomly labeled patterns can be correctly classified by a single-layer perceptron when the patterns are correlated with each other. In order to solve this problem, two analytical schemes are developed based on the replica method and Thouless-Anderson-Palmer (TAP) approach by utilizing an integral formula concerning random rectangular matrices. The validity and relevance of the developed methodologies are shown for one known result and two example problems. A message-passing algorithm to perform the TAP scheme is also presented
    • 

    corecore