245 research outputs found

    Impact of the gradient in gantry-table rotation on dynamic trajectory radiotherapy plan quality.

    Get PDF
    BACKGROUND To improve organ at risk (OAR) sparing, dynamic trajectory radiotherapy (DTRT) extends VMAT by dynamic table and collimator rotation during beam-on. However, comprehensive investigations regarding the impact of the gantry-table (GT) rotation gradient on the DTRT plan quality have not been conducted. PURPOSE To investigate the impact of a user-defined GT rotation gradient on plan quality of DTRT plans in terms of dosimetric plan quality, dosimetric robustness, deliverability, and delivery time. METHODS The dynamic trajectories of DTRT are described by GT and gantry-collimator paths. The GT path is determined by minimizing the overlap of OARs with planning target volume (PTV). This approach is extended to consider a GT rotation gradient by means of a maximum gradient of the path ( ) between two adjacent control points ( ) and maximum absolute change of G ( ). Four DTRT plans are created with different maximum G&∆G: &  = 0.5&0.125 (DTRT-1), 1&0.125 (DTRT-2), 3&0.125 (DTRT-3) and 3&1‍(DTRT-4), including 3-4 dynamic trajectories, for three clinically motivated cases in the head and neck and brain region (A, B, and C). A reference VMAT plan for each case is created. For all plans, plan quality is assessed and compared. Dosimetric plan quality is evaluated by target coverage, conformity, and OAR sparing. Dosimetric robustness is evaluated against systematic and random patient-setup uncertainties between in the lateral, longitudinal, and vertical directions, and machine uncertainties between in the dynamically rotating machine components (gantry, table, collimator rotation). Delivery time is recorded. Deliverability and delivery accuracy on a TrueBeam are assessed by logfile analysis for all plans and additionally verified by film measurements for one case. All dose calculations are Monte Carlo based. RESULTS The extension of the DTRT planning process with user-defined to investigate the impact of the GT rotation gradient on plan quality is successfully demonstrated. With increasing , slight (case C, : up to‍-1‍Gy) and substantial (case A, : up to -9.3 Gy, case‍B, : up to -4.7‍Gy) improvements in OAR sparing are observed compared to VMAT, while maintaining similar target coverage. All plans are delivered on the TrueBeam. Expected and actual machine position values recorded in the logfiles deviated by 96% (2%‍global/2 mm Gamma passing rate) with the dose calculation. With increasing , delivery time is prolonged by <2 min/trajectory (DTRT-4) compared to VMAT and DTRT-1. The DTRT plans for case A and B and the VMAT plan for case C plan reveal the best dosimetric robustness for the considered uncertainties. CONCLUSION The impact of the GT rotation gradient on DTRT plan quality is comprehensively investigated for three cases in the head and neck and brain region. Increasing freedom in this gradient improves dosimetric plan quality at the cost of increased delivery time for the investigated cases. No clear dependency of GT rotation gradient on dosimetric robustness is observed

    Growth of out-of-plane standing MoTe2(1-x)Se2x/MoSe2 composite flake films by sol–gel nucleation of MoOy and isothermal closed space telluro-selenization

    Full text link
    This study describes the sol–gel processing of MoOy on Si (1 0 0) to subsequently achieve out-of-plane MoTe2/MoSe2 flake composite films by an isothermal closed space vapor transformation. The oxide precursor films have been prepared from a Mo isopropoxide solution in isopropanol and acid catalysis induced by HCl. Thermal annealing at 200, 400 and 600 °C enhanced the condensation after xerogel formation. An x-ray absorption analysis demonstrates that films condensed at 200 °C are at an intermediate chemical state between MoO3 and MoO2. To achieve MoTe2/MoSe2 composite films, the precursor oxide films were reduced in H2 and exposed to the chalcogenides by isothermal closed space vapor transport at 600 °C. The multilayered nanocomposite films grow with an out-of-plane flake-like structure and an evident integration of Se in the MoTe2 phase according to a MoTe2(1-x)Se2x alloy, with an estimation of x of 0.25. The alloy and the orientation of the flakes are consistent with the bands present in the Raman spectrum. These films are attractive for applications requiring high surface area interfaces favoring gas or ion exchange reactions with transition metal dichalcogenidesThe current research was funded by grant CTQ2017-84309-C2-2-R from Ministerio de Ciencia e Innovación (Spain). The authors acknowledge the ESRF and the Ministerio de Ciencia, Innovación y Universidades (Spain), for provision of synchrotron radiation facilities and the Consejo Superior de Investigaciones Científicas (Spain) financial support for the operation of the beamline under Grant No. PIE 2010 6 OE 01

    Technical note: Feasibility of gating for dynamic trajectory radiotherapy - Mechanical accuracy and dosimetric performance.

    Get PDF
    BACKGROUND Dynamic trajectory radiotherapy (DTRT) extends state-of-the-art volumetric modulated arc therapy (VMAT) by dynamic table and collimator rotations during beam-on. The effects of intrafraction motion during DTRT delivery are unknown, especially regarding the possible interplay between patient and machine motion with additional dynamic axes. PURPOSE To experimentally assess the technical feasibility and quantify the mechanical and dosimetric accuracy of respiratory gating during DTRT delivery. METHODS A DTRT and VMAT plan are created for a clinically motivated lung cancer case and delivered to a dosimetric motion phantom (MP) placed on the table of a TrueBeam system using Developer Mode. The MP reproduces four different 3D motion traces. Gating is triggered using an external marker block, placed on the MP. Mechanical accuracy and delivery time of the VMAT and DTRT deliveries with and without gating are extracted from the logfiles. Dosimetric performance is assessed by means of gamma evaluation (3% global/2 mm, 10% threshold). RESULTS The DTRT and VMAT plans are successfully delivered with and without gating for all motion traces. Mechanical accuracy is similar for all experiments with deviations <0.14° (gantry angle), <0.15° (table angle), <0.09° (collimator angle) and <0.08 mm (MLC leaf positions). For DTRT (VMAT), delivery times are 1.6-2.3 (1.6- 2.5) times longer with than without gating for all motion traces except one, where DTRT (VMAT) delivery is 5.0 (3.6) times longer due to a substantial uncorrected baseline drift affecting only DTRT delivery. Gamma passing rates with (without) gating for DTRT/VMAT were ≥96.7%/98.5% (≤88.3%/84.8%). For one VMAT arc without gating it was 99.6%. CONCLUSION Gating is successfully applied during DTRT delivery on a TrueBeam system for the first time. Mechanical accuracy is similar for VMAT and DTRT deliveries with and without gating. Gating substantially improved dosimetric performance for DTRT and VMAT

    Organs-at-risk dose and normal tissue complication probability with dynamic trajectory radiotherapy (DTRT) for head and neck cancer.

    Get PDF
    We compared dynamic trajectory radiotherapy (DTRT) to state-of-the-art volumetric modulated arc therapy (VMAT) for 46 head and neck cancer cases. DTRT had lower dose to salivary glands and swallowing structure, resulting in lower predicted xerostomia and dysphagia compared to VMAT. DTRT is deliverable on C-arm linacs with high dosimetric accuracy

    Enabling non-isocentric dynamic trajectory radiotherapy by integration of dynamic table translations.

    Get PDF
    OBJECTIVE The purpose of this study is to develop a treatment planning process (TPP) for non-isocentric dynamic trajectory radiotherapy (DTRT) using dynamic gantry rotation, collimator rotation, table rotation, longitudinal, vertical and lateral table translations and intensity modulation and to validate the dosimetric accuracy. APPROACH The TPP consists of two steps. First, a path describing the dynamic gantry rotation, collimator rotation and dynamic table rotation and translations is determined. Second, an optimization of the intensity modulation along the path is performed. We demonstrate the TPP for three use cases. First, a non-isocentric DTRT plan for a brain case is compared to an isocentric DTRT plan in terms of dosimetric plan quality and delivery time. Second, a non-isocentric DTRT plan for a craniospinal irradiation (CSI) case is compared to a multi-isocentric intensity modulated radiotherapy (IMRT) plan. Third, a non-isocentric DTRT plan for a bilateral breast case is compared to a multi-isocentric volumetric modulated arc therapy (VMAT) plan. The non-isocentric DTRT plans are delivered on a TrueBeam in developer mode and their dosimetric accuracy is validated using radiochromic films. MAIN RESULTS The non-isocentric DTRT plan for the brain case is similar in dosimetric plan quality and delivery time to the isocentric DTRT plan but is expected to reduce the risk of collisions. The DTRT plan for the CSI case shows similar dosimetric plan quality while reducing the delivery time by 45% in comparison with the IMRT plan. The DTRT plan for the breast case showed better treatment plan quality in comparison with the VMAT plan. The gamma passing rates between the measured and calculated dose distributions are higher than 95% for all three plans. SIGNIFICANCE The versatile benefits of non-isocentric DTRT are demonstrated with three use cases, namely reduction of collision risk, reduced setup and delivery time and improved dosimetric plan quality

    Organ-at-risk sparing with dynamic trajectory radiotherapy for head and neck cancer: comparison with volumetric arc therapy on a publicly available library of cases.

    Get PDF
    BACKGROUND Dynamic trajectory radiotherapy (DTRT) extends volumetric modulated arc therapy (VMAT) with dynamic table and collimator rotation during beam-on. The aim of the study is to establish DTRT path-finding strategies, demonstrate deliverability and dosimetric accuracy and compare DTRT to state-of-the-art VMAT for common head and neck (HN) cancer cases. METHODS A publicly available library of seven HN cases was created on an anthropomorphic phantom with all relevant organs-at-risk (OARs) delineated. DTRT plans were generated with beam incidences minimizing fractional target/OAR volume overlap and compared to VMAT. Deliverability and dosimetric validation was carried out on the phantom. RESULTS DTRT and VMAT had similar target coverage. For three locoregionally advanced oropharyngeal carcinomas and one adenoid cystic carcinoma, mean dose to the contralateral salivary glands, pharynx and oral cavity was reduced by 2.5, 1.7 and 3.1 Gy respectively on average with DTRT compared to VMAT. For a locally recurrent nasopharyngeal carcinoma, D0.03 cc to the ipsilateral optic nerve was above tolerance (54.0 Gy) for VMAT (54.8 Gy) but within tolerance for DTRT (53.3 Gy). For a laryngeal carcinoma, DTRT resulted in higher dose than VMAT to the pharynx and brachial plexus but lower dose to the upper oesophagus, thyroid gland and contralateral carotid artery. For a single vocal cord irradiation case, DTRT spared most OARs better than VMAT. All plans were delivered successfully on the phantom and dosimetric validation resulted in gamma passing rates of 93.9% and 95.8% (2%/2 mm criteria, 10% dose threshold). CONCLUSIONS This study provides a proof of principle of DTRT for common HN cases with plans that were deliverable on a C-arm linac with high accuracy. The comparison with VMAT indicates substantial OAR sparing could be achieved

    Hearing loss and cognitive decline in the general population: a prospective cohort study

    Get PDF
    Background: Previous studies identifying hearing loss as a promising modifiable risk factor for cognitive decline mostly adjusted for baseline age solely. As such a faster cognitive decline at a higher age, which is expected considering the non-linear relationship between cognition and age, may have been overlooked. Therefore it remains uncertain whether effects of hearing loss on cognitive decline extend beyond age-related declines of cognitive function. Methods: 3,590 non-demented participants were eligible for analysis at baseline, and a maximum of 837 participants were eligible for the longitudinal analysis. Hearing loss was defined at baseline. Cognitive function was measured at baseline and at follow-up (4.4 years [SD: 0.2]). Multivariable linear regression analysis was used for the cross-sectional analysis. Linear mixed models were used to assess the longitudinal association between hearing loss and cognitive decline over time while adjusting for confounders and the interaction of age and follow-up time. Results: Hearing loss was associated with lower cognitive function at baseline. Moreover, hearing loss was associated with accelerated cognitive decline over time on a memory test. After additionally adjusting for the interaction between age and follow-up time, we found that hearing loss did not accelerate cognitive decline anymore. Conclusions: Hearing loss was associated with lowe

    In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry

    Get PDF
    Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for L-methionine, followed by fluorescent labeling of AHA containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater, and anoxic sediment. We also developed combined assays that couple BONCAT with rRNA-targeted FISH, enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labeling by nanoSIMS (^(15)NH_4^+ assimilation) for individual cells within a sediment sourced enrichment culture showed concordance between AHA positive cells and ^(15)N enrichment. BONCAT-FISH offers a fast, inexpensive, and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single cell level

    MRI-targeted or standard biopsy for prostate-cancer diagnosis

    Get PDF
    Background Multiparametric magnetic resonance imaging (MRI), with or without targeted biopsy, is an alternative to standard transrectal ultrasonography-guided biopsy for prostate-cancer detection in men with a raised prostate-specific antigen level who have not undergone biopsy. However, comparative evidence is limited. Methods In a multicenter, randomized, noninferiority trial, we assigned men with a clinical suspicion of prostate cancer who had not undergone biopsy previously to undergo MRI, with or without targeted biopsy, or standard transrectal ultrasonography-guided biopsy. Men in the MRI-targeted biopsy group underwent a targeted biopsy (without standard biopsy cores) if the MRI was suggestive of prostate cancer; men whose MRI results were not suggestive of prostate cancer were not offered biopsy. Standard biopsy was a 10-to-12-core, transrectal ultrasonography-guided biopsy. The primary outcome was the proportion of men who received a diagnosis of clinically significant cancer. Secondary outcomes included the proportion of men who received a diagnosis of clinically insignificant cancer. Results A total of 500 men underwent randomization. In the MRI-targeted biopsy group, 71 of 252 men (28%) had MRI results that were not suggestive of prostate cancer, so they did not undergo biopsy. Clinically significant cancer was detected in 95 men (38%) in the MRI-targeted biopsy group, as compared with 64 of 248 (26%) in the standard-biopsy group (adjusted difference, 12 percentage points; 95% confidence interval [CI], 4 to 20; P=0.005). MRI, with or without targeted biopsy, was noninferior to standard biopsy, and the 95% confidence interval indicated the superiority of this strategy over standard biopsy. Fewer men in the MRI-targeted biopsy group than in the standard-biopsy group received a diagnosis of clinically insignificant cancer (adjusted difference, -13 percentage points; 95% CI, -19 to -7; P&lt;0.001). Conclusions The use of risk assessment with MRI before biopsy and MRI-targeted biopsy was superior to standard transrectal ultrasonography-guided biopsy in men at clinical risk for prostate cancer who had not undergone biopsy previously. (Funded by the National Institute for Health Research and the European Association of Urology Research Foundation; PRECISION ClinicalTrials.gov number, NCT02380027 .)

    Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff

    Get PDF
    Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests
    corecore