7,990 research outputs found
Primordial Entropy Production and Lambda-driven Inflation from Quantum Einstein Gravity
We review recent work on renormalization group (RG) improved cosmologies
based upon a RG trajectory of Quantum Einstein Gravity (QEG) with realistic
parameter values. In particular we argue that QEG effects can account for the
entire entropy of the present Universe in the massless sector and give rise to
a phase of inflationary expansion. This phase is a pure quantum effect and
requires no classical inflaton field.Comment: 12 pages, 4 figures, IGCG-07 Pun
Recommended from our members
"Sub-Hertz" Dielectric Spectroscopy
Dielectric spectroscopy measurements below 1 Hz are often dominated by “conduction-like” effects. For this reason, they often appear to be dismissed as being of little interest. In this paper two “sub-hertz” responses are considered that give insights into the insulating sys-tems concerned. The first system is that of cross-linked polyethylene, taken from a power cable system. Measurements at temperatures between 60°C and close to melting at 100°C show a change in characteristic from a percolation process to a “true” DC conduction at close to the melting point. Using DC conductivities, it appears to be possible to show whether the cable has been subjected to thermo-electric ageing. This might give insights into where the conduction and hence the ageing in the XLPE is occurring. The second system is an epoxy composite. By considering the sub-hertz response, it is possible to demonstrate the effect of the interface between the filler and the epoxy matrix. In this system, ageing, resulting in delamination between the glass fiber filler and the epoxy, is clearly detected by sub-hertz dielectric spectroscopy. This process is likely to be facilitated by the presence of water, which is known to lead to mechanical failure in such systems, and which can also be detected by "sub-hertz" dielectric spectroscopy. The implications for nano-dielectrics are then briefly considered
A study of transport suppression in an undoped AlGaAs/GaAs quantum dot single-electron transistor
We report a study of transport blockade features in a quantum dot
single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We
observe suppression of transport through the ground state of the dot, as well
as negative differential conductance at finite source-drain bias. The
temperature and magnetic field dependence of these features indicate the
couplings between the leads and the quantum dot states are suppressed. We
attribute this to two possible mechanisms: spin effects which determine whether
a particular charge transition is allowed based on the change in total spin,
and the interference effects that arise from coherent tunneling of electrons in
the dot
The ambivalent shadow of the pre-Wilsonian rise of international law
The generation of American international lawyers who founded the American Society of International Law in 1906 and nurtured the soil for what has been retrospectively called a “moralistic legalistic approach to international relations” remains little studied. A survey of the rise of international legal literature in the U.S. from the mid-19th century to the eve of the Great War serves as a backdrop to the examination of the boosting effect on international law of the Spanish American War in 1898. An examination of the Insular Cases before the US Supreme Court is then accompanied by the analysis of a number of influential factors behind the pre-war rise of international law in the U.S. The work concludes with an examination of the rise of natural law doctrines in international law during the interwar period and the critiques addressed.by the realist founders of the field of “international relations” to the “moralistic legalistic approach to international relation
Harmonic Superspace, Minimal Unitary Representations and Quasiconformal Groups
We show that there is a remarkable connection between the harmonic superspace
(HSS) formulation of N=2, d=4 supersymmetric quaternionic Kaehler sigma models
that couple to N=2 supergravity and the minimal unitary representations of
their isometry groups. In particular, for N=2 sigma models with quaternionic
symmetric target spaces of the form G/HXSU(2) we establish a one-to-one mapping
between the Killing potentials that generate the isometry group G under Poisson
brackets in the HSS formulation and the generators of the minimal unitary
representation of G obtained by quantization of its geometric realization as a
quasiconformal group. Quasiconformal extensions of U-duality groups of four
dimensional N=2, d=4 Maxwell-Einstein supergravity theories (MESGT) had been
proposed as spectrum generating symmetry groups earlier. We discuss some of the
implications of our results, in particular, for the BPS black hole spectra of
4d, N=2 MESGTs.Comment: 20 pages; Latex file: references added; minor cosmetic change
Spacetime Defects: von K\'arm\'an vortex street like configurations
A special arrangement of spinning strings with dislocations similar to a von
K\'arm\'an vortex street is studied. We numerically solve the geodesic
equations for the special case of a test particle moving along twoinfinite rows
of pure dislocations and also discuss the case of pure spinning defects.Comment: 9 pages, 2figures, CQG in pres
On the gravitational field of static and stationary axial symmetric bodies with multi-polar structure
We give a physical interpretation to the multi-polar Erez-Rozen-Quevedo
solution of the Einstein Equations in terms of bars. We find that each
multi-pole correspond to the Newtonian potential of a bar with linear density
proportional to a Legendre Polynomial. We use this fact to find an integral
representation of the function. These integral representations are
used in the context of the inverse scattering method to find solutions
associated to one or more rotating bodies each one with their own multi-polar
structure.Comment: To be published in Classical and Quantum Gravit
Neutrino masses in the Lepton Number Violating MSSM
We consider the most general supersymmetric model with minimal particle
content and an additional discrete Z_3 symmetry (instead of R-parity), which
allows lepton number violating terms and results in non-zero Majorana neutrino
masses. We investigate whether the currently measured values for lepton masses
and mixing can be reproduced. We set up a framework in which Lagrangian
parameters can be initialised without recourse to assumptions concerning
trilinear or bilinear superpotential terms, CP-conservation or
intergenerational mixing and analyse in detail the one loop corrections to the
neutrino masses. We present scenarios in which the experimental data are
reproduced and show the effect varying lepton number violating couplings has on
the predicted atmospheric and solar mass^2 differences. We find that with
bilinear lepton number violating couplings in the superpotential of the order 1
MeV the atmospheric mass scale can be reproduced. Certain trilinear
superpotential couplings, usually, of the order of the electron Yukawa coupling
can give rise to either atmospheric or solar mass scales and bilinear
supersymmetry breaking terms of the order 0.1 GeV^2 can set the solar mass
scale. Further details of our calculation, Lagrangian, Feynman rules and
relevant generic loop diagrams, are presented in three Appendices.Comment: 48 pages, 7 figures, v2 references added, typos corrected, published
versio
Cognition-Enhancing Drugs: Can We Say No?
Normative analysis of cognition-enhancing drugs frequently weighs the liberty interests of drug users against egalitarian commitments to a level playing field. Yet those who would refuse to engage in neuroenhancement may well find their liberty to do so limited in a society where such drugs are widespread. To the extent that unvarnished emotional responses are world-disclosive, neurocosmetic practices also threaten to provide a form of faulty data to their users. This essay examines underappreciated liberty-based and epistemic rationales for regulating cognition-enhancing drugs
- …